MHB Directional and Partial Derivatives ....Notation .... D&K ....

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Multidimensional Real Analysis I: Differentiation" by J. J. Duistermaat and J. A. C. Kolk ...

I am focused on Chapter 2: Differentiation ... ...

I need help with an aspect of D&K's notation for directional and partial derivatives ... ...

D&K's definition of directional and partial derivatives reads as follows:View attachment 7855In a previous post I have demonstrated that $$D_j f(a) = D_{ e_j} f(a) = D f(a) e_j = \begin{pmatrix} D_j f_1 (a) \\ D_j f_2 (a) \\ D_j f_3 (a) \\ ... \\ ... \\ ... \\ D_j f_p (a) \end{pmatrix}$$
I am assuming that in the common 'partials' notation ( Jacobi notation ) that the above can be expressed as follows:
$$D_j f(a) = \frac{ \partial f }{ \partial x_j } = \begin{pmatrix} \frac{ \partial f_1 }{ \partial x_j } (a) \\ \frac{ \partial f_2 }{ \partial x_j } (a) \\ \frac{ \partial f_3 }{ \partial x_j } (a) \\ ... \\ ... \\ ... \\\frac{ \partial f_p }{ \partial x_j } (a) \end{pmatrix}$$Is that correct use of notation/terminology ...?

Peter
 
Last edited:
Physics news on Phys.org
Yes. Check out Wolfgang Walter's book on DE's. Or Roseenwasser's books on autonomous control systems using sensitivity analysis. Notation is similar in both.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...