MHB Discontinuous and continuous functions

Carla1985
Messages
91
Reaction score
0
I need to find a function that is continuous at 0 but discontinuous at every other point. IV been stuck on this for hours now :( thankyou
 
Physics news on Phys.org
Re: discontinuous and continuous functions

Carla1985 said:
I need to find a function that is continuous at 0 but discontinuous at every other point. IV been stuck on this for hours now :( thankyou

Hey Carla! ;)

How about:
$$f(x) = \left\{\begin{aligned}
x & \text{ if } x \in \mathbb Q \\
-x & \text{ if } x \in \mathbb R \backslash \mathbb Q
\end{aligned}\right.$$
 
Carla1985 said:
I need to find a function that is continuous at 0 but discontinuous at every other point. IV been stuck on this for hours now :( thankyou

Continuous at just one point ! , then how does the limit exist ?
 
Not a clue. I don't get it at all. The exact wording of a question, just in case iv got it wrong is: "give an example of a function defined on R which is continuous at x=0 and discontinuous at every other point of R". I like Serena, thank you :)
 
ZaidAlyafey said:
Continuous at just one point ! , then how does the limit exist ?

Consider the definition of the limit of a function, using $(\varepsilon, \delta)$-definitions.
Combine it with the definition of a continuous function in a point.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top