Discrete-continuous random variable

Click For Summary

Discussion Overview

The discussion revolves around the variance of a random variable $X$ that is defined based on two normally distributed random variables $Z_1$ and $Z_2$, and a Bernoulli random variable $B$. The participants explore the implications of the definitions and relationships between these variables, focusing on the calculation of variance in the context of discrete-continuous random variables.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose that the variance of $X$ can be expressed as $\sigma_{X}^{2}= p\ \sigma_{1}^{2} + (1-p)\ \sigma_{2}^{2}$, based on the properties of the Bernoulli variable $B$.
  • Others argue that this result holds only under specific conditions, particularly when $Z_1$ and $Z_2$ have the same mean, and suggest starting from the formula $var[X] = E[X^2] - E[X]^2$ for a more general approach.
  • A participant mentions that the independence of $Z_1$ and $Z_2$ allows for the addition of variances, leading to the expression $VAR(X) = p \sigma_1^2 + (1 - p) \sigma_2^2$.
  • Another participant introduces the concept of finding a probability density function for $X$ and discusses how to derive expectations and variances from it, including the impact of differing means on the variance calculation.
  • There is a suggestion that the total variance should account for the distance from each point to the overall mean, indicating that the difference between the means of the distributions plays a critical role in the variance of $X$.

Areas of Agreement / Disagreement

Participants express differing views on the conditions under which the proposed variance formulas are valid. There is no consensus on a single correct approach, and the discussion remains unresolved regarding the implications of differing means on the variance of $X$.

Contextual Notes

Some participants note that the derivations depend on the assumptions made about the means of $Z_1$ and $Z_2$, and the discussion highlights the complexity involved when these means differ significantly.

OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

I'm looking at the following random variables:

$Z_1$ is normally distributed with zero mean and variance $\sigma _1 ^2$
$Z_2$ is normally distributed with zero mean and variance $\sigma _2 ^2$

$B$ is Bernoulli with probability of success $p$.

$X$ is a random variable that takes $Z_1$ if $B=1$ and $Z_2$ if $B=0$.

What is the variance of $X$?
 
Physics news on Phys.org
Re: Dicrete-continuous random variable!

OhMyMarkov said:
Hello everyone!

I'm looking at the following random variables:

$Z_1$ is normally distributed with zero mean and variance $\sigma _1 ^2$
$Z_2$ is normally distributed with zero mean and variance $\sigma _2 ^2$

$B$ is Bernoulli with probability of success $p$.

$X$ is a random variable that takes $Z_1$ if $B=1$ and $Z_2$ if $B=0$.

What is the variance of $X$?

The 'instinctive' answer should be...

$\displaystyle \sigma_{X}^{2}= p\ \sigma_{1}^{2} + (1-p)\ \sigma_{2}^{2}$ (1)

Kind regards

$\chi$ $\sigma$
 
Re: Dicrete-continuous random variable!

My statistics are a bit rusty, but we have:

$$P(B = 1) = p$$
$$P(B = 0) = 1 - p$$

And we're given that:

$$VAR(X | B = 1) = \sigma_1^2$$
$$VAR(X | B = 0) = \sigma_2^2$$

And since $Z_1$ and $Z_2$ are independent, you can just add the variances up:

$$VAR(X) = P(B = 1) VAR(X | B = 1) + P(B = 0) VAR(X | B = 0)$$

Which gives:

$$VAR(X) = p \sigma_1^2 + (1 - p) \sigma_2^2 = \sigma_1^2 + (\sigma_2^2 - \sigma_1^2) p$$

I've checked the result empirically.
 
Re: Dicrete-continuous random variable!

Bacterius said:
[snip]

And since $Z_1$ and $Z_2$ are independent, you can just add the variances up:

$$VAR(X) = P(B = 1) VAR(X | B = 1) + P(B = 0) VAR(X | B = 0)$$

[snip]
Hi Bacterius,

I don't think that is true, in general. Have you thought about what would change if $Z_1$ and $Z_2$ did not have the same mean?

Suggestion: You might start with
$$var[X] = E[X^2] - E[X]^2$$
 
Re: Dicrete-continuous random variable!

awkward said:
Hi Bacterius,

I don't think that is true, in general. Have you thought about what would change if $Z_1$ and $Z_2$ did not have the same mean?

Suggestion: You might start with
$$var[X] = E[X^2] - E[X]^2$$

Yes, it only works in this particular case. I did not consider beyond the problem asked.
 
Re: Dicrete-continuous random variable!

Cool problem.

Assign $Z_{i}$ to have mean $\mu_{i}$ and pdf $f_{i}(x)$.

Everything should follow if we find a pdf $f(x)$ for $X$.

$f(x)=P(X=x)=P(X=x|Z_{1})P(Z_{1})+P(X=x|Z_{2})P(Z_{2})$
(Law of Total Probability)
$=pf_{1}(x)+(1-p)f_{2}(x).$

$E(X)=\int_{\mathbb{R}}x*f(x)dx$
$=\int_{\mathbb{R}}{x*[pf_{1}(x)+(1-p)f_{2}(x)]}dx $
$=p\int_{\mathbb{R}}{x*f_{1}(x)dx} + (1-p)\int_{\mathbb{R}}{{x}*f_{2}dx}$
$=pE(Z_{1})+(1-p)E(Z_{2})$
$=p\mu_{1}+(1-p)\mu_{2}$.

$E(X^{2})=\int_{\mathbb{R}}{x^{2}}f(x)dx$
$=\int_{\mathbb{R}}{x^{2}}[pf_{1}(x)+(1-p)f_{2}(x)]dx $
$=p\int_{\mathbb{R}}{x^{2}f_{1}(x)dx}+(1-p)\int_{\mathbb{R}}{x^{2}f_{2}(x)dx}$
$=pE(Z_{1}^{2})+(1-p)E(Z_{2}^{2}) $
$=p(\sigma_{1}^{2}+\mu_{1}^2)+(1-p)(\sigma_{2}^{2}+\mu_{2}^2)$
(Because we know $var(Z)=E(Z^{2})-E(Z)^{2}$)

$var(X)=E(X^{2})-E(X)^2$, for which I am getting
$p\sigma_{1}^{2}+(1-p)\sigma_{2}^{2}+p(1-p)(\mu_{1}-\mu_{2})^{2}$.

This concurs with past answers, but it's strange. The problem is what the variance of X would be if the means are very different like two distributions:

... .. . .. ... ... _________________________ . .. . ... . ... .. ... ..

Calculating the total variance should involve the distance from each point to the total mean where the total mean is pretty far from each distribution's mean. But if the above work is correct, all the information you need about how the total variance is changed when the means are changed is in the difference between the means. (Not the sum- made a mistake typing it up).
 
Last edited:

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 42 ·
2
Replies
42
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K