MHB Discrete sets and uncountability of limit points

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Definition: A subset $D$ of $\mathbb R$ is said to be discrete if for every $x\in D$ there exists $\epsilon>0$ such that $(x-\epsilon,x+\epsilon)\cap D=\{x\}$.

Question: Does there exist a discrete subset $D$ of $\mathbb R$ such that the set of limit points of $D$ is an uncountable set.
___

Progress:
We claim that the set of limit points, $D'$, of a discrete set $D$ has to be nowhere dense.

To prove the above claim we just need to show that:
1. D' is a closed set (This doesn't even require $D$ to be discrete).
2. $\text{Int}(D')$ is empty.

(1) is obvious.
To show (2) assume the contradictory. Let $(a,b)\subseteq D'$. Now let $x\in (a,b)\cap D$ (such an $x$ has to exist). Now clearly since $D$ is discrete, $x\notin D'$. Also, using the property of discrete sets, we know that there is an open set $O$ which contains $x$ and satisfies $O\cap D=\emptyset$. Thus $O\cap D'=\emptyset$. This means $O\cap (a,b)=\emptyset$ and we get our contradiction.
___

So if we are construct a counterexample we should be aiming towards constructing a nowhere dense set of limit points of a discrete set.

cleardot.gif

 
Physics news on Phys.org
As an off-the-cuff suggestion, can you take $D$ to consist of the midpoints of the intervals in the construction of the Cantor set?
 
Opalg said:
As an off-the-cuff suggestion, can you take $D$ to consist of the midpoints of the intervals in the construction of the Cantor set?
Thanks Opalg. I think this is a counterexample.

$D=\displaystyle \bigcup_{m=0}^{\infty} \left( \bigcup_{k=0}^{3^m-1} \left\{\frac{2k+1}{2\cdot 3^m}\right\}\right)$

Let me wrestle with the details though. The first thing is to verify that this actually is a discrete set.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
6K
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K