From the reading I have done:(adsbygoogle = window.adsbygoogle || []).push({});

In the presence of a drive, which is described by an addition term in the Jaynes-Cummings Hamiltonian, the Hamiltonian cannot be solved analytically. The dynamics of the system become non-trivial, with the behaviour depending on the specic parameter regime. So, the bad cavity limit is where the cavity relaxation ##\kappa## is much greater than the dephasing rates of the qubit ##\gamma##. A system that obeys both the dispersive regime and bad cavity limit allows for a hierarchical scale to be established:

##\gamma << \kappa <<\frac{g^2}{\Delta}<< \Delta << \omega_c##

where ##\Delta## is the difference in the cavity and field frequency and g is the coupling between the qubit and cavity.

So finally my question: What do ##\kappa## and ##\gamma## actually represent? Are the rate at which caivty/qubit emit photons?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Dispersive Regime in Jaynes-Cummings Model

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**