MHB Distance between points in a triangle

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Points Triangle
Yankel
Messages
390
Reaction score
0
Hello all,

Below there is a problem:

There are five points inside an equilateral triangle of side length 2. Show that at least two of the points are within 1 unit distance from each other.

I have plotted such a triangle using "Geogebra", and attaching the picture.

I know that if I create another equilateral triangle within the original one, I get four triangles. Then, according to the pigeonhole principle, with 5 points (pigeons) and 4 triangle (holes), at least two points will be in the same triangle.

My questions are:

1) What is the geometrical reasoning for claiming that two points within a triangle will have a distance of 1 units max ? I couldn't prove it.
2) What happens if a point in the bigger triangle happens to be on the edge of the inner black triangle? Doesn't it disproof the theory ?

Thank you in advance !

View attachment 7554
 

Attachments

  • triangle.PNG
    triangle.PNG
    7 KB · Views: 129
Mathematics news on Phys.org
Yankel said:
Hello all,

Below there is a problem:

There are five points inside an equilateral triangle of side length 2. Show that at least two of the points are within 1 unit distance from each other.

I have plotted such a triangle using "Geogebra", and attaching the picture.

I know that if I create another equilateral triangle within the original one, I get four triangles. Then, according to the pigeonhole principle, with 5 points (pigeons) and 4 triangle (holes), at least two points will be in the same triangle.

My questions are:

1) What is the geometrical reasoning for claiming that two points within a triangle will have a distance of 1 units max ? I couldn't prove it.
2) What happens if a point in the bigger triangle happens to be on the edge of the inner black triangle? Doesn't it disproof the theory ?

Thank you in advance !

Suppose there are 2 points in the triange CDE.

the largest distance between any 2 points in CDE (The points in the edges included) is 1.

to prove the same draw an arc with centre C and distance 1
DE line segment shall be in the arc and any poins in DE shall be < 1 (unless end point D or E for which distance = 1)
so maximum distance is 1
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top