(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A proton (q = 1e, m = 1u) and an alpha particle (q = +2e, m = 4u) are fired directly toward each other from far away, with an initial speed of 0.01c. What is their distance of closest approach, as measured between their centers? (Hint: There are two conserved quantities. Make use of both.)

2. Relevant equations

[tex] K_i + U_i = K_f + U_f [/tex]

[tex]m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}[/tex]

3. The attempt at a solution

How does this look?

[tex]e = 1.60 * 10^{-19} C[/tex]

[tex]c = 3.00 * 10^8 m/s[/tex]

[tex]u = 1.661 * 10^{-27} kg[/tex]

[tex]m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}[/tex]

[tex](4u)(3 * 10^8 m/s) - (u)(3 * 10^8 m/s) = (4u + u)v_{f}[/tex]

[tex]v_{f} = \frac{(4u)(3 * 10^8 m/s) - (u)(3 * 10^8 m/s)}{(4u + u)}[/tex]

[tex]v_{f} = 1.80 * 10^8 m/s[/tex]

[tex]\frac{1}{2}(m_{1}+m_{2})v_{f}^{2} + \frac{1}{4\pi\epsilon_0}(\frac{q1q2}{\infty}) = \frac{1}{2}(m_{1}+m_{2})v_{i}^{2} + \frac{1}{4\pi\epsilon_0}(\frac{q1q2}{r})[/tex]

[tex]\frac{1}{2}(4u + u)(1.80*10^8 m/s)^{2} = \frac{1}{2}(4u + u)(3.00*10^8 m/s)^{2} + \frac{1}{4\pi\epsilon_0}(\frac{2(1.60*10^{-19} C)(1.60*10^{-19} C)}{r})[/tex]

[tex]4\pi\epsilon_0(\frac{1}{2}(4u + u)(1.80*10^8 m/s)^{2} - \frac{1}{2}(4u + u)(3.00*10^8 m/s)^{2}) = (\frac{2(1.60*10^{-19} C)(1.60*10^{-19} C)}{r})[/tex]

[tex]r= \frac{2(1.60*10^{-19} C)(1.60*10^{-19} C)}{4\pi\epsilon_0(\frac{1}{2}(4u + u)(1.80*10^8 m/s)^{2} - \frac{1}{2}(4u + u)(3.00*10^8 m/s)^{2})}[/tex]

[tex]r = -1.92 * 10^{-18} m[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Distance of closest approach of particles

**Physics Forums | Science Articles, Homework Help, Discussion**