Undergrad Distribute Limit over Addition: Evaluating w/o Knowing Convergence

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Algebra Limits
Click For Summary
SUMMARY

The discussion centers on the theorem regarding the distribution of limits over addition, specifically stating that if sequences (a_n) and (b_n) converge to limits L and M, then the limit of their sum is L + M. Participants argue that to apply this theorem correctly, one must first verify the convergence of the individual sequences before distributing the limit. Counterexamples, such as a_n = 2^n and b_n = -2^n, illustrate that the limit of the sum can exist even when individual limits do not, emphasizing the need for rigor in limit evaluation.

PREREQUISITES
  • Understanding of sequences and limits in calculus
  • Familiarity with the concept of convergence
  • Knowledge of limit theorems, particularly the limit of sums
  • Ability to construct and analyze counterexamples in mathematical proofs
NEXT STEPS
  • Study the formal definition of convergence in sequences
  • Learn about the properties of limits, including limit theorems
  • Explore counterexamples in calculus to understand the nuances of limit evaluation
  • Investigate the implications of the epsilon-delta definition of limits
USEFUL FOR

Mathematics students, educators, and anyone interested in deepening their understanding of limits and convergence in calculus.

Mr Davis 97
Messages
1,461
Reaction score
44
The theorem that allows one to distribute the limit over addition is the following: Let ##(a_n), (b_n)## be sequences that converge to ##L## and ##M## respectively. Then ##\lim (a_n+b_n) = L + M##.

So evidently, a hypothesis of distributing the limit is that we know ##a_n## and ##b_n## converge.

So, here is my question. Say that I don't know whether ##1/n## and ##1/n^2## converges or not. Normally, to evaluate ##\lim (1/n + 1/n^2)## we distribute the limit and then determine whether each sequence converges or not. Shouldn't this be the other way around? Shouldn't we determine whether each sequence converges first, and then distribute the limit, which is what models the logical progression of the theorem above?
 
Physics news on Phys.org
As long as you verify that the two individual limits exist, that shows that the equality holds. You are not using the equality before it is proven except to guide you in identifying the individual limits that you need to prove. You are not using it to tell you that the individual limits do exist.
 
  • Like
Likes Mr Davis 97
Mr Davis 97 said:
So evidently, a hypothesis of distributing the limit is that we know ##a_n## and ##b_n## converge.
This doesn't work in this direction. First we have to make sure that the components converge, then the formula holds.
An easy counterexample: ##a_n=(-1)^n\; , \;b_n=(-1)^{n+1}##.
 
  • Like
Likes WWGD
fresh_42 said:
This doesn't work in this direction. First we have to make sure that the components converge, then the formula holds.
An easy counterexample: ##a_n=(-1)^n\; , \;b_n=(-1)^{n+1}##.
Or, in the opposite direction ##a_n =2^n ## and ## b_n =-2^n ##
 
Last edited:
Mr Davis 97 said:
Normally, to evaluate ##\lim (1/n + 1/n^2)## we distribute the limit and then determine whether each sequence converges or not. Shouldn't this be the other way around? Shouldn't we determine whether each sequence converges first, and then distribute the limit, which is what models the logical progression of the theorem above?

Yes, to be perfectly rigorous we should do that. However, as you said, it's common to see a sequence of equations like
##lim_{n \rightarrow \infty } ((f(n) + g(n)) = \lim_{n \rightarrow \infty} f(n) + \lim_{n \rightarrow \infty} g(n) = L_1 + L_2 ##
This turns out to be true "in the end" when ## \lim_{n \rightarrow \infty} f(n) = L_1## and ##\lim_{n \rightarrow \infty} g(n) = L_2## since both limits exist. However, the rigorous way to write things would be to write that both those limits exist before stating the value of ##\lim_{n \rightarrow \infty} (f(n) + g(n))##.

As pointed out by others, if you are trying to prove ##lim_{n \rightarrow \infty} ( f(n) + g(n)) ## does not exist, then it isn't sufficient to show that one or both of ##lim_{n\rightarrow \infty} f(n)## or ##\lim_{n \rightarrow \infty} g(n)## don't exist.
 
Stephen Tashi said:
Yes, to be perfectly rigorous we should do that. However, as you said, it's common to see a sequence of equations like
##lim_{n \rightarrow \infty } ((f(n) + g(n)) = \lim_{n \rightarrow \infty} f(n) + \lim_{n \rightarrow \infty} g(n) = L_1 + L_2 ##
This turns out to be true "in the end" when ## \lim_{n \rightarrow \infty} f(n) = L_1## and ##\lim_{n \rightarrow \infty} g(n) = L_2## since both limits exist. However, the rigorous way to write things would be to write that both those limits exist before stating the value of ##\lim_{n \rightarrow \infty} (f(n) + g(n))##.

As pointed out by others, if you are trying to prove ##lim_{n \rightarrow \infty} ( f(n) + g(n)) ## does not exist, then it isn't sufficient to show that one or both of ##lim_{n\rightarrow \infty} f(n)## or ##\lim_{n \rightarrow \infty} g(n)## don't exist.
But what do you say about the counterexamples like ## a_n =2^n , b_n =-2^n ##? The limit exists but it is not equal to the sum of the limits?
 
WWGD said:
But what do you say about the counterexamples like ## a_n =2^n , b_n =-2^n ##? The limit exists but it is not equal to the sum of the limits?
If we're talking about ##lim_{n \rightarrow \infty} ## what limits would you sum?

The fact that lim (f + g) can exist when the individual limits do not is not a counterexample to anything I said.

It is not a counter example to the theorem that if the individual limits exist then the limit of their sum exists.

It is not a counter example to the statement that we cannot prove the the limit of the sum does not exist by showing the limits of the summands do not exist.
 
Stephen Tashi said:
If we're talking about ##lim_{n \rightarrow \infty} ## what limits would you sum?

The fact that lim (f + g) can exist when the individual limits do not is not a counterexample to anything I said.

It is not a counter example to the theorem that if the individual limits exist then the limit of their sum exists.

It is not a counter example to the statement that we cannot prove the the limit of the sum does not exist by showing the limits of the summands do not exist.
My bad, I misread your "isn't" as an is.
As pointed out by others, if you are trying to prove ##lim_{n \rightarrow \infty} ( f(n) + g(n)) ## does not exist, then it isn't sufficient to show that one or both of ##lim_{n\rightarrow \infty} f(n)## or ##\lim_{n \rightarrow \infty} g(n)## don't exist.
 
Last edited by a moderator:

Similar threads

Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K