- 1,442
- 191
I found a problem on another site that solves my theorem troubles nicely.
Theorem 2) Let ##A_n , A\in\mathbb{R}^N## such that
$$A\subset\cdots\subset A_{n+1}\subset A_n\subset\cdots\subset A_2\subset A_1$$
and let ##A:=\bigcap_{n=1}^\infty A_n## Then for Lebesgue measurable ##f:\mathbb{R}^N\to\mathbb{C}## define the set function ##\phi : A_1\to\mathbb{C}## by
$$\phi (E):=\int_{E} f\, d\mu \, \, \forall E\subset A_1$$
Then,
$$\lim_{n\to\infty}\phi (A_n) = \phi (A)$$
which is to say explicitly that
$$\lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu$$
Proof: Let
$$f_n:=f\cdot\chi_{A_n}=\begin{cases} f( x ) & \text{if } x \in A_n \\
0 & \text{ } \text{elsewhere} \end{cases}$$
and let
$$f:=f\cdot\chi_{A}=\begin{cases} f( x ) & \text{if } x \in A \\
0 & \text{ } \text{elsewhere} \end{cases}$$
Then
$$f_1 (x)\geq f_2 (x)\geq\cdots\geq f_n (x)\geq f_{n+1} (x)\geq\cdots f(x)$$
hence by the Lebesgue Dominated Convergence Theorem with ##f_1 (x) \geq | f_n (x) | \, \forall x\in \mathbb{R}^N,\forall n\in\mathbb{Z}^+## we have
$$\lim_{n\to\infty}\phi (A_n) = \lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu =\phi (A) $$
and the theorem is demonstrated.
For my results to hold I require that I can use this sequence in Theorem 2:
$$S_{n}:=\left\{\vec x \in\mathbb{R}^N | x_{k}\geq 0\forall k\, , \sum_{k=1}^{N}x_{k}^{2n}\leq N\right\}$$
$$S :=\bigcap_{k=1}^\infty S_k = \left\{ \vec x \in\mathbb{R}^N | 0 \leq x_{k} \leq 1 \forall k \right\}$$
I'm not sure of how to prove via inequalities that
$$S\subset\cdots\subset S_{n+1}\subset S_n\subset\cdots\subset S_2\subset S_1$$
because in practice I used ##N=2## and lots of graphs to demonstrate the above property of ##S_{n+1}\subset S_n\, \forall n\in\mathbb{Z}^+##, any help would be appreciated. Thanks for your time!
Theorem 2) Let ##A_n , A\in\mathbb{R}^N## such that
$$A\subset\cdots\subset A_{n+1}\subset A_n\subset\cdots\subset A_2\subset A_1$$
and let ##A:=\bigcap_{n=1}^\infty A_n## Then for Lebesgue measurable ##f:\mathbb{R}^N\to\mathbb{C}## define the set function ##\phi : A_1\to\mathbb{C}## by
$$\phi (E):=\int_{E} f\, d\mu \, \, \forall E\subset A_1$$
Then,
$$\lim_{n\to\infty}\phi (A_n) = \phi (A)$$
which is to say explicitly that
$$\lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu$$
Proof: Let
$$f_n:=f\cdot\chi_{A_n}=\begin{cases} f( x ) & \text{if } x \in A_n \\
0 & \text{ } \text{elsewhere} \end{cases}$$
and let
$$f:=f\cdot\chi_{A}=\begin{cases} f( x ) & \text{if } x \in A \\
0 & \text{ } \text{elsewhere} \end{cases}$$
Then
$$f_1 (x)\geq f_2 (x)\geq\cdots\geq f_n (x)\geq f_{n+1} (x)\geq\cdots f(x)$$
hence by the Lebesgue Dominated Convergence Theorem with ##f_1 (x) \geq | f_n (x) | \, \forall x\in \mathbb{R}^N,\forall n\in\mathbb{Z}^+## we have
$$\lim_{n\to\infty}\phi (A_n) = \lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu =\phi (A) $$
and the theorem is demonstrated.
For my results to hold I require that I can use this sequence in Theorem 2:
$$S_{n}:=\left\{\vec x \in\mathbb{R}^N | x_{k}\geq 0\forall k\, , \sum_{k=1}^{N}x_{k}^{2n}\leq N\right\}$$
$$S :=\bigcap_{k=1}^\infty S_k = \left\{ \vec x \in\mathbb{R}^N | 0 \leq x_{k} \leq 1 \forall k \right\}$$
I'm not sure of how to prove via inequalities that
$$S\subset\cdots\subset S_{n+1}\subset S_n\subset\cdots\subset S_2\subset S_1$$
because in practice I used ##N=2## and lots of graphs to demonstrate the above property of ##S_{n+1}\subset S_n\, \forall n\in\mathbb{Z}^+##, any help would be appreciated. Thanks for your time!
Last edited: