Convergence of a sequence of sets

Click For Summary

Discussion Overview

The discussion revolves around the convergence of a sequence of sets as defined in Baby Rudin's "Principles of Mathematical Analysis." Participants explore the definitions of outer measure and the convergence of sets, particularly in the context of Lebesgue's Dominated Convergence Theorem. The focus is on proving the convergence of specific sets, denoted as ##S_n## and ##S##, within the framework of measure theory.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 introduces the definitions from Baby Rudin regarding the outer measure and the convergence of sequences of sets, seeking assistance in proving convergence for specific sets.
  • Post 2 suggests a strategy involving the definitions and the relationship between the sets ##S_n## and ##S##, proposing to show that the distance between them converges to zero.
  • Post 3 discusses the symmetry in the boundary equations of the sets and derives a formula for the maximal distance, indicating that this distance approaches zero as ##n## increases.
  • Post 4 emphasizes the need for an argument regarding the outer measure and suggests using a finite subcover to demonstrate convergence.
  • Post 5 reiterates the need for a covering argument and corrects a detail in the definition of the sets, while expressing uncertainty about evaluating the norm.
  • Post 6 notes that the Euclidean volume approaches zero and raises the question of whether the measure ##\mu## also approaches zero.
  • Post 7 provides a detailed argument involving finite subcovers and the measure of the sets, concluding that the distance converges to zero.
  • Post 8 acknowledges a mistake in the original definition of ##S_n## and corrects it to ensure compactness, indicating the importance of this property for the analysis.

Areas of Agreement / Disagreement

Participants express various strategies and viewpoints regarding the convergence of the sets, with some agreeing on the need for compactness and the use of finite subcovers, while others explore different aspects of the problem. The discussion remains unresolved, with no consensus on the final approach or conclusions.

Contextual Notes

The discussion includes limitations related to the definitions of the sets and the properties of the outer measure. There are unresolved mathematical steps regarding the evaluation of norms and the implications of compactness on the convergence of the sets.

  • #31
I found a problem on another site that solves my theorem troubles nicely.

Theorem 2) Let ##A_n , A\in\mathbb{R}^N## such that

$$A\subset\cdots\subset A_{n+1}\subset A_n\subset\cdots\subset A_2\subset A_1$$

and let ##A:=\bigcap_{n=1}^\infty A_n## Then for Lebesgue measurable ##f:\mathbb{R}^N\to\mathbb{C}## define the set function ##\phi : A_1\to\mathbb{C}## by
$$\phi (E):=\int_{E} f\, d\mu \, \, \forall E\subset A_1$$
Then,
$$\lim_{n\to\infty}\phi (A_n) = \phi (A)$$
which is to say explicitly that
$$\lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu$$

Proof: Let
$$f_n:=f\cdot\chi_{A_n}=\begin{cases} f( x ) & \text{if } x \in A_n \\
0 & \text{ } \text{elsewhere} \end{cases}$$
and let
$$f:=f\cdot\chi_{A}=\begin{cases} f( x ) & \text{if } x \in A \\
0 & \text{ } \text{elsewhere} \end{cases}$$

Then
$$f_1 (x)\geq f_2 (x)\geq\cdots\geq f_n (x)\geq f_{n+1} (x)\geq\cdots f(x)$$
hence by the Lebesgue Dominated Convergence Theorem with ##f_1 (x) \geq | f_n (x) | \, \forall x\in \mathbb{R}^N,\forall n\in\mathbb{Z}^+## we have
$$\lim_{n\to\infty}\phi (A_n) = \lim_{n\to\infty}\int_{A_n} f\, d\mu = \int_{A} f\, d\mu =\phi (A) $$
and the theorem is demonstrated.

For my results to hold I require that I can use this sequence in Theorem 2:
$$S_{n}:=\left\{\vec x \in\mathbb{R}^N | x_{k}\geq 0\forall k\, , \sum_{k=1}^{N}x_{k}^{2n}\leq N\right\}$$
$$S :=\bigcap_{k=1}^\infty S_k = \left\{ \vec x \in\mathbb{R}^N | 0 \leq x_{k} \leq 1 \forall k \right\}$$

I'm not sure of how to prove via inequalities that
$$S\subset\cdots\subset S_{n+1}\subset S_n\subset\cdots\subset S_2\subset S_1$$
because in practice I used ##N=2## and lots of graphs to demonstrate the above property of ##S_{n+1}\subset S_n\, \forall n\in\mathbb{Z}^+##, any help would be appreciated. Thanks for your time!
 
Last edited:
Physics news on Phys.org
  • #32
You used the following conclusions:
\begin{align*}
\lim_{n \to \infty}\phi(A_n)&=\lim_{n \to \infty} \int_{A_n}f\,d\mu \\& \stackrel{(1)}{=} \lim_{n \to \infty} \int_{A}f\circ \chi(A_n)\,d\mu \\
&\stackrel{(2)}{=} \int_A \left(\lim_{n \to \infty} f\circ \chi(A_n) \right)\,d\mu \\
&\stackrel{(3)}{=} \int_A \left(f \circ \chi\left(\displaystyle{\bigcap_{n=1}^{\infty}}A_n\right) \right) \,d\mu \\
&\stackrel{(4)}{=} \int_A f \circ \chi(A) \,d\mu \\
&=\int_A f\,d\mu\\
&= \phi(A)
\end{align*}
What is your argument for ##(3)##:
$$
\lim_{n \to \infty} f\circ \chi(A_n) {=}_{a.e.} f \circ \chi\left(\displaystyle{\bigcap_{n=1}^{\infty}}A_n\right)
$$
 
  • #33
I see a few of these different, so I'll change them in the quote:

fresh_42 said:
You used the following conclusions:
\begin{align*}
\lim_{n \to \infty}\phi(A_n)&=\lim_{n \to \infty} \int_{A_n}f\,d\mu \\& \stackrel{(1)}{=} \lim_{n \to \infty} \int_{\mathbb{R}^N}f\circ \chi(A_n)\,d\mu \\
&\stackrel{(2)}{=} \int_{\mathbb{R}^N} \left(\lim_{n \to \infty} f\circ \chi(A_n) \right)\,d\mu \\
&\stackrel{(3)}{=} \int_{\mathbb{R}^N} \left(f \circ \chi\left(\displaystyle{\bigcap_{n=1}^{\infty}}A_n\right) \right) \,d\mu \\
&\stackrel{(4)}{=} \int_A f \circ \chi(A) \,d\mu \\
&=\int_A f\,d\mu\\
&= \phi(A)
\end{align*}
What is your argument for ##(3)##:
$$
\lim_{n \to \infty} f\circ \chi(A_n) {=}_{a.e.} f \circ \chi\left(\displaystyle{\bigcap_{n=1}^{\infty}}A_n\right)
$$

Since the ##A_n## are decreasing we have that ##f\circ \chi (A_n )\downarrow f\circ\chi (A)## where the convergence is point-wise and because every point of ##A## is in every ##A_n## and so by Dominated Convergence Theorem with ##\left| f\circ \chi (A_n )\right| \leq \left| f\circ\chi (A_1)\right|\in\mathfrak{L}(\mu )## because ##f\in\mathfrak{L}(\mu )## and I think we can assume the ##A_n## are measurable subsets of ##\mathbb{R}^N##, right? So by DCT we have
$$\lim_{n\to\infty}\int_{\mathbb{R}^N} f\circ\chi (A_n ) \, d\mu = \int_{\mathbb{R}^N}\lim_{n\to\infty}f\circ\chi (A_n )\, d\mu = \int_{\mathbb{R}^N} f\circ\chi (A)\, d\mu = \int_A f\, d\mu$$

Edit: There was also a note about using Monotone Convergence Theorem instead of DCT.
 
  • #34
I'm still not sure whether ##(3)## doesn't need continuity or boundness of ##f##. You pull the limit across the function, so why is this allowed?

I'm not saying it's wrong, only that I don't see it. However, I'm not quite sure how strong Lebesgue integrable is.
 
Last edited:
  • #35
Think of the definition of the infinite limit

$$\lim_{n\to\infty}f\circ\chi \left( \bigcap_{k=1}^{n} A_k \right) = f\circ\chi (A)\Leftrightarrow $$
$$\forall \epsilon >0\, \exists\, M\in\mathbb{Z}^+\text{ such that } n\geq M\Rightarrow \left|f\circ\chi \left( \bigcap_{k=1}^{n} A_k \right)- f\circ\chi (A) \right|<\epsilon$$

Here we are always dealing finite number of intersections and we know that

$$A\subset \cdots \subset A_{n+1}\subset A_{n}\subset\cdots \subset A_{2}\subset A_1$$

hence ascertain that ##\bigcap_{k=1}^{n} A_k = A_n## and inserting this into the above definition of a limit we obtain

$$\forall \epsilon >0\, \exists\, M\in\mathbb{Z}^+\text{ such that } n\geq M\Rightarrow \left|f\circ\chi (A_n) - f\circ\chi (A) \right|<\epsilon$$
$$\Leftrightarrow\lim_{n\to\infty}f\circ\chi (A_n) = f\circ\chi (A) $$

Does that answer your question?
 
  • #36
No. My problem was exactly why ##\|f(\chi(A_n))(x)-f(\chi(A))(x)\|<\varepsilon## without further conditions on ##f##.
 
  • #37
Well we know that f is integrable and ##A_n## is measurable, is that not enough?
 
  • #38
benorin said:
Well we know that f is integrable and ##A_n## is measurable, is that not enough?
I am not sure. I suppose we need ##f## to be continuous, but maybe Lebesgue integrable will do. I just don't see it. We have that ##\|\chi(A_n)(x)-\chi(A)(x)\|## is small, but why does applying ##f## keep this condition?
 
  • #39
I found a remark in Baby Rudin that I think may help,

Remark: If f is Lebesgue integrable on E, and if ##A\in\mathfrak{M}## (A is measurable) and ##A\subset E##, then f is Lebesgue integrable on A.

Also that if f is Lebesgue integrable on E, the f is finite on E a.e. may also help, I think
 
  • #40
What if I let ##B_n:=\bigcap_{k=1}^n A_k## and then define ##f_k:=f\circ\chi (B_k)## and proceed with the proof as before, would

$$
\lim_{n \to \infty} f\circ \chi(B_n) {=}_{a.e.} f \circ \chi\left(\displaystyle{\bigcap_{k=1}^{\infty}}A_k\right)
$$

still give you pause?
 
  • #41
Sure, but what makes you confident, that ##f## doesn't destroy that behavior? If ##f## is continuous, o.k., but is it?
 
  • #42
Let ##B_n:=\bigcap_{k=1}^n A_k## and then define ##f_k:=f\circ\chi (B_k)## and proceed with the proof as before, let's examine whether

$$
\lim_{n \to \infty} f\circ \chi(B_n) {=}_{a.e.} f \circ \chi\left(\displaystyle{\bigcap_{k=1}^{\infty}}A_k\right)
$$

is true: is the measure of the set where they're not equal equal to zero? I.e. is

$$\mu \left( S\left( \lim_{n\to\infty}B_n , \bigcap_{k=1}^{\infty}A_k\right) \right)$$
$$=\mu \left\{\left( \left( \lim_{n\to\infty}B_n\right) - \bigcap_{k=1}^{\infty}A_k\right) \cup \left(\left(\bigcap_{k=1}^{\infty}A_k\right) - \left( \lim_{n\to\infty}B_n\right)\right) \right\}=0?$$

where ##S(A,B)## is the symmetric difference of sets; I think this follows from the definnition of ##B_n## trivially. So, satisfied that the ##\chi 's## are equal everywhere it follows that ##f\circ \chi 's## are also equal since applying f just inserts the value of f(x) if x is in the set ##\chi## is of (and zero otherwise) and these are equal sets on both sides so evaluating f in the same places on both sides should be equal everywhere, right?
 
Last edited:
  • #43
"Let S,Sn be as in the problem statement. It is clear that S is the (increasing) union of the Sn. This is already enough to guarantee that m(S(S,Sn))=m(S−Sn) goes to zero as n→∞."

To be airtight, it's necessary to account for the boundary ∂S of S.
 
  • #44
Why? I gave an argument- do you disagree with any part of it?
 
  • #45
@zinq , I'm uncertain which post you are quoting but I should make you aware there has been at least 3 different definitions of convergence of a sequence of sets employed at various times in this thread. I ended up using point-wise convergence and the proof of post #31. As for showing that the particular sequence of sets I mentioned I needed to work with the theorem in post #31 I have used bivariate induction and three different Lagrange Multipliers proofs to flesh out the induction proof (not shown here). If you mean to point out a shortcoming of the proof in post #31, then I am most interested in what you have to say.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K