Distribution, expected value, variance, covariance and correlation

Click For Summary
SUMMARY

The discussion focuses on the statistical properties of independent random variables, specifically a Bernoulli distributed variable $X$ with success parameter $p_0$, and two Poisson distributed variables $Y$ and $Z$ with parameters $\lambda$ and $\mu$, respectively. Participants calculated the distribution, expected value, and variance of the product $XY$, confirming that $E[XY] = E[X] \cdot E[Y]$ due to independence. They also derived the covariance and correlation between $XY$ and $XZ$, concluding that $\text{Cov}(XY, XZ) = (p - p^2) \cdot \lambda \cdot \mu$ and provided the formula for correlation.

PREREQUISITES
  • Understanding of Bernoulli distribution and its properties
  • Knowledge of Poisson distribution and its parameters
  • Familiarity with concepts of expected value, variance, covariance, and correlation
  • Ability to apply independence in probability theory
NEXT STEPS
  • Study the properties of the Bernoulli distribution in detail
  • Explore the derivation of expected values for products of independent random variables
  • Learn how to calculate covariance and correlation for multiple random variables
  • Investigate applications of Poisson processes in real-world scenarios
USEFUL FOR

Statisticians, data analysts, and students of probability theory who are looking to deepen their understanding of random variables and their interrelationships, particularly in the context of Bernoulli and Poisson distributions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $X$, $Y$ and $Z$ be independent random variables. Let $X$ be Bernoulli distributed on $\{0,1\}$ with success parameter $p_0$ and let $Y$ be Poisson distributed with parameter $\lambda$ and let $Z$ be Poisson distributed with parameter $\mu$.

(a) Calculate the distribution, the expected value and the variance of $XY$.

(b) Determine the Covariance and the correlation between $XY$ and $XZ$.
For question (a) :

We have that $$P(X=0)=1-p_0 \ \text{ and} \ P(X=1)=p_0$$ and $$P(Y=k)=\frac{\lambda^k}{k!}\cdot e^{-\lambda}$$

Sodo we get that $$P(XY=k)=P(XY=k|X=0)P(X=0)+P(XY=k|X=1)P(X=1)$$ If $k=0$ then \begin{align*}P(XY=0)&=P(XY=0|X=0)P(X=0)+P(XY=0|X=1)P(X=1)\\ & =1-p_0+e^{-\lambda}\end{align*} If $k\neq 0$ then \begin{align*}P(XY=k)&=P(XY=k|X=0)P(X=0)+P(XY=k|X=1)P(X=1)\\ & =0+\frac{\lambda^k}{k!}\cdot e^{-\lambda}\cdot p_0\\ & = \frac{\lambda^k}{k!}\cdot e^{-\lambda}\cdot p_0\end{align*}

Is that correct? :unsure:
 
Physics news on Phys.org
mathmari said:
If $k=0$ then \begin{align*}P(XY=0)&=P(XY=0|X=0)P(X=0)+P(XY=0|X=1)P(X=1)\\ & =1-p_0+e^{-\lambda}\end{align*}
Hey mathmari!

Don't we have $P(XY=0|X=1)P(X=1) \,=\, P(Y=0)P(X=1) \,=\, e^{-\lambda}\cdot p_0$? :unsure:
 
Klaas van Aarsen said:
Don't we have $P(XY=0|X=1)P(X=1) \,=\, P(Y=0)P(X=1) \,=\, e^{-\lambda}\cdot p_0$? :unsure:

Ahh yes! (Malthe)

Then the expected value is $E[XY]=E[X]\cdot E[Y]$ because they are independent, right?

About the variance we have $V(XY)=E((XY)^2)-(E[XY])^2$, but how do we calculate $E((XY)^2)$ ?

:unsure:
 
mathmari said:
About the variance we have $V(XY)=E((XY)^2)-(E[XY])^2$, but how do we calculate $E((XY)^2)$ ?
We have $E\big((XY)^2\big) = E\big(X^2\cdot Y^2\big)$ and since $X$ and $Y$ are independent, $X^2$ and $Y^2$ will also be independent. 🤔
 
Klaas van Aarsen said:
We have $E\big((XY)^2\big) = E\big(X^2\cdot Y^2\big)$ and since $X$ and $Y$ are independent, $X^2$ and $Y^2$ will also be independent. 🤔

Ahh ok! So it is $E[X^2]\cdot E[Y^2]$. But how are these factors defined? I got stuk right now.. Do we use the variance? :unsure:
 
mathmari said:
Ahh ok! So it is $E[X^2]\cdot E[Y^2]$. But how are these factors defined? I got stuk right now.
Easiest is to look up the variances of the Bernoulli and Poison distributions and use those. 🤔
 
Last edited:
Klaas van Aarsen said:
Easiest is to look up the variances of the Bernouli and Poison distributions and use those. 🤔

We have the following :
\begin{equation*}V(XY)=E((XY)^2)-(E[XY])^2= E\big(X^2\cdot Y^2\big)-\left (p\cdot \lambda\right )^2= E\big(X^2\big)\cdot E\big( Y^2\big)-p^2\cdot \lambda^2\end{equation*}
The variance of $X$ is $\text{Var}(X)=p(1-p)$ and \begin{align*}E(X^2)-(E(X))^2=p(1-p) &\Rightarrow E(X^2)=p(1-p)+(E(X))^2 \Rightarrow E(X^2)=p(1-p)+p^2 \\ & \Rightarrow E(X^2)=p-p^2+p^2\Rightarrow E(X^2)=p\end{align*}
The variance $Y$ is $\text{Var}(Y)=\lambda$ and \begin{equation*}E(Y^2)-(E(Y))^2=\lambda \Rightarrow E(Y^2)=\lambda+(E(Y))^2 \Rightarrow E(Y^2)=\lambda+\lambda^2 \end{equation*}
So we get \begin{equation*}V(XY)= E\big(X^2\big)\cdot E\big( Y^2\big)-p^2\cdot \lambda^2= p\cdot \left (\lambda+\lambda^2\right )-p^2\cdot \lambda^2= p\cdot \lambda+p\cdot\lambda^2-p^2\cdot \lambda^2= p\cdot \lambda+(p-p^2)\cdot \lambda^2\end{equation*}

:unsure:
 
Looks correct to me. :unsure:
 
Klaas van Aarsen said:
Looks correct to me. :unsure:

Great! For question (b) : The covariance is $\text{Cov}(XY, XZ)=E[(XY)(XZ)]-E[XY]E[XZ]$.

How do we calculate $E[(XY)(XZ)]$ ? :unsure:
 
  • #10
mathmari said:
How do we calculate $E[(XY)(XZ)]$ ?
Isn't it the same as $E[X^2\cdot Y \cdot Z]$? :unsure:
 
  • #11
Klaas van Aarsen said:
Isn't it the same as $E[X^2\cdot Y \cdot Z]$? :unsure:

Ah and this is equal to $E[X^2]\cdot E[Y] \cdot [Z]$ because these are independent random variables, right? :unsure:
 
  • #12
mathmari said:
Ah and this is equal to $E[X^2]\cdot E[Y] \cdot [Z]$ because these are independent random variables, right?
Yep. (Nod)
 
  • #13
Klaas van Aarsen said:
Yep. (Nod)

So we have the following:

The covariance of $XY$ and $XZ$ is \begin{align*}\text{Cov}(XY, XZ)&=E[(XY)(XZ)]-E[XY]E[XZ]=E[X^2\cdot Y \cdot Z]-p\cdot \lambda\cdot p\cdot \mu=E[X^2]\cdot E[Y] \cdot E[Z]-p\cdot \lambda\cdot p\cdot \mu\\ & =p\cdot \lambda \cdot \mu-p^2\cdot \lambda\cdot \mu=(p-p^2)\cdot \lambda \cdot \mu\end{align*}
The correlation of $XY$ and $XZ$ is \begin{align*}\rho _{XY,XZ}={\frac {\operatorname {Cov} (XY,XZ)}{{\sqrt {\operatorname {Var} (XY)}}{\sqrt {\operatorname {Var} (XZ)}}}}={\frac {(p-p^2)\cdot \lambda \cdot \mu}{{\sqrt {p\cdot \lambda+(p-p^2)\cdot \lambda^2}}{\sqrt {p\cdot \mu+(p-p^2)\cdot \mu^2}}}}\end{align*}

Is everything correct? :unsure:
 
  • #14
It looks correct to me. :unsure:
 
  • #15
Klaas van Aarsen said:
It looks correct to me. :unsure:

Great! Thank you! (Sun)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K