- #1
- 7,297
- 11,094
Hi everyone, a couple of technical questions :
1) Definition: Anyone know the definition of the induced orientation of a submanifold S of an orientable manifold M?
2)Dividing sets in contact manifolds: We have a contact 3-manifold (M3,ζ ). We
define a surface S embedded in M3 to be a convex surface if there exists a contact
vector field X that is transverse to S, i.e., X does not live on the surface; X is not in the span of any basis for TpS. Now, we define the dividing set of the surface S to be the set of points of X that live in the contact planes , i.e., p is in the dividing set if X(p) is in ζ(p) ; ζ(p) is the contact plane at the point p, and X(p) is the contact vector field at p ( a contact vector field for (M3,ζ ) is a vector field whose flow preserves ζ , i.e., LXζ=gζ , where L is the
Lie derivative of the form ζ along the vector field X, and g is a positive smooth function.
So, say I have the standard contact structure in R3 given by ker(cos(πr)dx+sin(πr)dθ) . I know ∂/∂z is a contact field , so that it is transverse to any disk in the xy-plane. How do I find the dividing set in this case? I need to find the points in R3 so that ∂/∂z (p)
( basically, the z-axis "based at p " ) lies in the contact plane at p.
I'm kind of stuck in a loop here; any suggestions, please ?
Thanks.
1) Definition: Anyone know the definition of the induced orientation of a submanifold S of an orientable manifold M?
2)Dividing sets in contact manifolds: We have a contact 3-manifold (M3,ζ ). We
define a surface S embedded in M3 to be a convex surface if there exists a contact
vector field X that is transverse to S, i.e., X does not live on the surface; X is not in the span of any basis for TpS. Now, we define the dividing set of the surface S to be the set of points of X that live in the contact planes , i.e., p is in the dividing set if X(p) is in ζ(p) ; ζ(p) is the contact plane at the point p, and X(p) is the contact vector field at p ( a contact vector field for (M3,ζ ) is a vector field whose flow preserves ζ , i.e., LXζ=gζ , where L is the
Lie derivative of the form ζ along the vector field X, and g is a positive smooth function.
So, say I have the standard contact structure in R3 given by ker(cos(πr)dx+sin(πr)dθ) . I know ∂/∂z is a contact field , so that it is transverse to any disk in the xy-plane. How do I find the dividing set in this case? I need to find the points in R3 so that ∂/∂z (p)
( basically, the z-axis "based at p " ) lies in the contact plane at p.
I'm kind of stuck in a loop here; any suggestions, please ?
Thanks.
Last edited: