MHB Divisibility Challenge: Find Smallest Integer for $f(x)$

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $f(x) = 5x^{13}+13x^5+9\cdot a \cdot x$

Find the smallest possible integer, $a$, such that $65$ divides $f(x)$ for every integer $x$.
 
Mathematics news on Phys.org
Finally, some abstract algebra pays off!

[sp]First of all, note that $65|(5x^{13}+13x^5 + 9ax) \iff 5|(5x^{13}+13x^5 + 9ax)$ and $13|(5x^{13}+13x^5 + 9ax)$.

This suggests looking at the given polynomial mod 5 and mod 13.

Mod 5 we have:

$3x^5 + 4ax = 0$ (since we want 5 to divide the expression on the left).

$x(3x^4 + 4a) = 0$

Since $x$ can be some integer co-prime to 5, we will assume $x \neq 0$ (mod 5). Thus:

$3x^4 + 4a = 3 + 4a = 0$, that is:

$4a = 2$ (mod 5) so that:

$a = 3$ (mod 5).

Mod 13 we have:

$5x^{13} + 9ax = 0$ (since we want the expression on the left to be divisible by 13), thus:

$x(5x^{12} + 9a) = 0$. Again, we may assume $x \neq 0$ (mod 13), so we have:

$5x ^{12} + 9a = 5 + 9a = 0$ thus:

$9a = 8$ (mod 13), so that:

$a = 11$ (mod 13).

Since 5 and 13 are prime, we can apply the Chinese Remainder theorem to obtain:

$a = (3)(13)[13^{-1}]_5 + 11(5)[5^{-1}]_{13} = (3)(13)(2) + (11)(5)(8) = 78 + 440 = 518 = 65*7 + 63 = 63$ (mod 65).

Depending on if you meant:

the smallest POSITIVE value for $a$, we obtain: $a = 63$

the smallest absolute value for $a$, we obtain $a = -2$

there is no "smallest" such $a$ given the usual ordering of the real numbers, since the set of solutions contains infinitely many negative integers.[/sp]
 
Last edited:
$f(x) = x(5x^{12} + 13x^4 + 9a)$
x can be factored out so 65 should divide $5x^{12} + 13x^4 + 9a$

65 = 13 * 5

So taking mod 5 we have $13x^4\, + 9a\, mod\, 5 = 0$
It is true for any x so take x co-prime to 5 so we have x^4 = 1

So we get 13 + 9a mod 5 = 0 or 3 – a mod 5 = 0 or a = 3 mod 5

Similarly we have $5x^{12} + 9a \,mod \,13 = 0$ or 5 + 9a mod 13 = 0 or a = 11 mod 13

a = 3 mod 5 and a = 11 mod 13 can be solved by using chinees remainder theorem also but we see that
a = -2 mod 5 and a = -2 mod 13 so a = -2 mod 65 or 63
a = 63 + 65n and a = 63 is the lowest positive integer
 
Last edited:
Thankyou and well done Deveno and kaliprasad for your thorough and correct answers.
You´re absolutely right, Deveno, I should have pointed out, that it is the smallest positive integer a, I was looking for.

Solution by other:

\[f(x)\equiv 0 \: \: \: (mod\: \: \: 65)\\\\ 5\cdot x^{13}+13\cdot x^5+9\cdot a\cdot x \equiv 0 \: \: \: (mod\: \: \: 65)\\\\\]

Applying "Fermats little theorem":

\[5\cdot x^{13}\equiv 5x \: \:\: (mod\: \: \: 65)\\\\ 13\cdot x^{5}\equiv 13x \: \:\: (mod\: \: \: 65)\\\\\]
\[5x + 13x + 9ax \equiv 0 \: \:\: (mod\: \: \: 65)\\\\ 9x(2+a)\equiv 0\: \:\: (mod\: \: \: 65)\\\\\]
Thus
$$2+a\equiv 0\: \:\: (mod\: \: \: 65) \Rightarrow a = 63$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top