MHB Dman's question at Yahoo Answers concerning linear approximates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line?

Use linear approximation, i.e. the tangent line, to approximate 1/.101 as follows: Let f(x)=1/x and find the equation of the tangent line to f(x) at a "nice" point near .101 Then use this to approximate 1/.101

Here is a link to the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello dman,

I would begin with:

$\displaystyle \frac{\Delta f}{\Delta x}\approx\frac{df}{dx}$

Using $\Delta f=f(x+\Delta x)-f(x)$ and multiplying through by $\Delta x$ we obtain:

$\displaystyle f(x+\Delta x)\approx\frac{df}{dx}\Delta x+f(x)$

Now, using the following:

$\displaystyle f(x)=\frac{1}{x}\,\therefore\,\frac{df}{dx}=-\frac{1}{x^2},\,x=0.1,\,\Delta x=0.001$

we may state:

$\displaystyle \frac{1}{0.101}\approx-\frac{1}{0.01}\cdot0.001+\frac{1}{0.1}=10-0.1=9.9$

For comparison:

$\displaystyle \frac{1}{0.101}=9.900990099009...$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top