MHB Dman's question at Yahoo Answers concerning linear approximates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Linear
Click For Summary
The discussion focuses on using linear approximation to estimate 1/0.101 by finding the tangent line of the function f(x) = 1/x at a nearby point. The derivative of f(x) is calculated as -1/x², evaluated at x = 0.1, to derive the equation of the tangent line. By applying the linear approximation formula, the estimate for 1/0.101 is found to be approximately 9.9. This method provides a close approximation compared to the actual value of 9.900990099009... The discussion emphasizes the effectiveness of linear approximation in estimating values of functions near known points.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line?

Use linear approximation, i.e. the tangent line, to approximate 1/.101 as follows: Let f(x)=1/x and find the equation of the tangent line to f(x) at a "nice" point near .101 Then use this to approximate 1/.101

Here is a link to the question:

Use linear approximation, Let 1/.101 and f(x)=1/x and find the equation of the tangent line? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello dman,

I would begin with:

$\displaystyle \frac{\Delta f}{\Delta x}\approx\frac{df}{dx}$

Using $\Delta f=f(x+\Delta x)-f(x)$ and multiplying through by $\Delta x$ we obtain:

$\displaystyle f(x+\Delta x)\approx\frac{df}{dx}\Delta x+f(x)$

Now, using the following:

$\displaystyle f(x)=\frac{1}{x}\,\therefore\,\frac{df}{dx}=-\frac{1}{x^2},\,x=0.1,\,\Delta x=0.001$

we may state:

$\displaystyle \frac{1}{0.101}\approx-\frac{1}{0.01}\cdot0.001+\frac{1}{0.1}=10-0.1=9.9$

For comparison:

$\displaystyle \frac{1}{0.101}=9.900990099009...$.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
4
Views
3K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K