Do Coherent States Imply 0 Energy Uncertainty?

Click For Summary
The discussion centers on the implications of coherent states in quantum mechanics, particularly regarding energy uncertainty. It asserts that coherent states, represented as superpositions of energy eigenstates, do not yield definite energy values, thus raising questions about the possibility of zero energy uncertainty. Participants debate the relationship between coherent states and the energy-time uncertainty principle, emphasizing that coherent states are not eigenstates of the Hamiltonian. The conversation also touches on the mathematical representation of coherent states and the calculation of expectation values, highlighting the subtleties involved in evaluating energy uncertainties. Ultimately, the discussion seeks clarity on whether coherent states can indeed have zero energy uncertainty without contradicting established principles.
uxioq99
Messages
11
Reaction score
4
Homework Statement
Consider the state ##\psi_\lambda = N e^{\lambda a^\dagger} \phi_0## where ##\phi_0## is the ground state of the harmonic well and ##a^\dagger##. What is the energy uncertainty ##\Delta E## of ##\psi_\lambda##?
Relevant Equations
##\psi_\lambda = N e^{\lambda a^\dagger} \phi_0##
##\Delta E = \sqrt{\langle E^2 \rangle - \langle E \rangle^2}##
By considering the power series for ##e^x##, I assert that ##N=e^{-\lambda^2/2}## and that ##a\Psi_\lambda = \lambda \Psi_\lambda##. Because the Hamiltonian may be written ##\hbar \omega(a^\dagger a + 1/2)##, ##\langle E \rangle = \hbar \omega(\langle a \Psi_\lambda, a \Psi_\lambda \rangle + 1/2)## by the definition of the adjoint. Then, ##\langle E \rangle = \hbar \omega (|\lambda|^2 + 1/2)##. Likewise, ##E^2 = \hbar^2 \omega^2((a^\dagger a)^2 + a^\dagger a + 1/4)##.

##
\begin{align}
\langle \Psi_\lambda | a^\dagger a a^\dagger a | \Psi_\lambda \rangle
&= (a^\dagger a | \Psi_\lambda \rangle)^\dagger (a^\dagger a | \Psi_\lambda \rangle) \\
&= |\lambda|^2 \langle a^\dagger \Psi_\lambda, a^\dagger \Psi_\lambda \rangle \\
&= |\lambda|^2 \langle a\Psi_\lambda, a\Psi_\lambda \rangle \\
&=|\lambda|^4 \langle \Psi_\lambda, \Psi_\lambda \rangle \\
\end{align}
##

Therefore, ##\langle E^2 \rangle = (|\lambda|^4 + |\lambda|^2 + 1/4)=\langle E \rangle^2##. Is it really possible that a coherent state has ##0## energy uncertainty? How would that not contradict the energy time uncertainty principle?

Thank you all in advance.
 
Last edited:
Physics news on Phys.org
uxioq99 said:
Is it really possible that a coherent state has ##0## energy uncertainty? How would that not contradict the energy time uncertainty principle?

Thank you all in advance.
Can you state, precisely, the energy time uncertainty principle? As it applies to the harmonic oscillator?
 
Coherent states are not eigenstates of the Hamiltonian and thus the energy does not take a determined value. I'd not bring in the energy-time uncertainty relation, which is subtle and has nothing to do with the simpler question about the energy uncertainty of a coherent state.

The most simple representation of the coherent state is in terms of the energy eigenstates ("Fock states"):
$$|\Phi(\alpha) \rangle=c_0 \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n \rangle, \quad c_0 = \exp(-|\alpha^2|/2), \quad \alpha \in \mathbb{C}.$$
From this you can get the probaility to find ##n## "phonons" by
$$P(n)=|\langle n|\Phi(\alpha)|^2,$$
and from this you can evaluate ##\langle n \rangle## and ##\Delta n^2## easily. Then you only need
$$\hat{H}=\hbar \omega (\hat{n}+1/2 \rangle)$$
to get ##\langle E \rangle## and ##\Delta E^2=\langle (E-\langle E \rangle)^2 \rangle.##
 
uxioq99 said:
##
\begin{align}
\langle \Psi_\lambda | a^\dagger a a^\dagger a | \Psi_\lambda \rangle
&= (a^\dagger a | \Psi_\lambda \rangle)^\dagger (a^\dagger a | \Psi_\lambda \rangle) \nonumber\\
&= |\lambda|^2 \langle a^\dagger \Psi_\lambda, a^\dagger \Psi_\lambda \rangle \nonumber \\
&= |\lambda|^2 \langle a\Psi_\lambda, a\Psi_\lambda \rangle \nonumber\\
&=|\lambda|^4 \langle \Psi_\lambda, \Psi_\lambda \rangle \nonumber \\
\end{align}
##
Note ##\langle a^\dagger \Psi_\lambda, a^\dagger \Psi_\lambda \rangle \neq \langle a\Psi_\lambda, a\Psi_\lambda \rangle##
 
  • Like
Likes topsquark, uxioq99 and MatinSAR
@TSny Thank you, I forgot that they didn't commute. My brain was still operating in "elementary mode".
 
And also note
$$\hat{a}^{\dagger} |\Psi_{\lambda} \rangle \neq \lambda^* |\Psi_{\lambda} \rangle.$$
Note the INequality sign!

The trick in evaluating expectation values or matrix elements of operators between coherent states is to bring everything in normal ordering and then act with the creation operators on the bra and the annihilation operators on the ket. For this you only need
$$\hat{a} |\Psi_{\lambda} \rangle=\lambda |\Psi_{\lambda} \rangle.$$
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...