MHB Do you have a diferent method to solve this Integral?

  • Thread starter Thread starter Bryan1
  • Start date Start date
  • Tags Tags
    Integral Method
Click For Summary
The discussion revolves around different methods to solve the integral of dx/(e^x + 1). One participant uses a substitution method involving x = -Ln(u), leading to a transformed integral that simplifies to -Ln|1 + e^(-x)| + C. Another participant employs partial fractions, letting u = e^x, which results in the integral being expressed as ln|e^x| - ln|e^x + 1| + C. Both methods ultimately yield equivalent results, showcasing the versatility in solving this integral. The conversation highlights the importance of clarity in mathematical notation and the sharing of techniques among participants.
Bryan1
Messages
1
Reaction score
0
Integral[(dx/(ex+1)]
Here’s my method:
If
x = -Ln(u)
Then
dx = -du/u;
ex = 1/u;
u = e-x;
Substituting in the integral we get:
Integral[(-du/u)/((1/u)+1)] = -Integral[du/(1+u)]
Solving the integer in terms of u:
-Ln|1+u|+C
Substituting x in the result:
-Ln|1+e-x|+C
Sorry that i didn't use the appropriate math symbols, I don't unsderstand the language used to do it. And also sorry if there's english mistakes.
Tank you for reading up to this point.
 
Physics news on Phys.org
I would write:

$$\int\frac{1}{e^x+1}\,dx=-\int\frac{-e^{-x}}{e^{-x}+1}\,dx=-\ln\left(e^{-x}+1\right)+C$$
 
Bryan said:
Integral[(dx/(ex+1)]
Here’s my method:
If
x = -Ln(u)
Then
dx = -du/u;
ex = 1/u;
u = e-x;
Substituting in the integral we get:
Integral[(-du/u)/((1/u)+1)] = -Integral[du/(1+u)]
Solving the integer in terms of u:
-Ln|1+u|+C
Substituting x in the result:
-Ln|1+e-x|+C
Sorry that i didn't use the appropriate math symbols, I don't unsderstand the language used to do it. And also sorry if there's english mistakes.
Tank you for reading up to this point.

$\displaystyle \begin{align*} \int{\frac{dx}{e^x + 1}} &= \int{\frac{e^x\,dx}{e^x \left( e^x + 1 \right)} } \\ &= \int{ \frac{du}{u \left( u +1 \right) } } \textrm{ if we let } u = e^x \implies du = e^x\,dx \end{align*}$

So now applying partial fractions:

$\displaystyle \begin{align*} \frac{A}{u} + \frac{B}{u + 1} &\equiv \frac{1}{u \left( u + 1 \right) } \\ A \left( u + 1 \right) + B \, u &\equiv 1 \end{align*}$

Let $\displaystyle \begin{align*} u = 0 \end{align*}$ and we find $\displaystyle \begin{align*} A = 1 \end{align*}$ and let $\displaystyle \begin{align*} u = -1 \end{align*}$ to find $\displaystyle \begin{align*} B = -1 \end{align*}$ and we have

$\displaystyle \begin{align*} \int{ \frac{du}{u \left( u + 1 \right) } } &= \int{ \frac{1}{u} - \frac{1}{u + 1} \,du } \\ &= \ln{ \left| u \right| } - \ln{ \left| u + 1 \right| } + C \\ &= \ln{ \left| e^x \right| } - \ln{ \left| e^x + 1 \right| } + C \\ &= \ln{ \left( e^x \right) } - \ln{ \left( e^x + 1 \right) } + C \textrm{ since } e^x > 0 \textrm{ for all } x \\ &= x - \ln{ \left( e^x + 1 \right) }+ C \end{align*}$
 

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K