- #1
Happiness
- 690
- 31
Consider a gaussian wave packet whose wave function at a particular instant of time is
Its time dependence is implicit in the "constants" A, a, <x> and <p>, which may all be functions of time.
But regardless of what functions of time they may be, these constants will take on some values at another instant of time and remain independent of x. So the wave function (at this new time) is still gaussian.
So a gaussian wave packet remains gaussian. True or false?
I think it's false. But what's wrong with the deduction?
Its time dependence is implicit in the "constants" A, a, <x> and <p>, which may all be functions of time.
But regardless of what functions of time they may be, these constants will take on some values at another instant of time and remain independent of x. So the wave function (at this new time) is still gaussian.
So a gaussian wave packet remains gaussian. True or false?
I think it's false. But what's wrong with the deduction?