Does a massless string cause a normal force when attached to a wall?

AI Thread Summary
A massless ideal string does not create a normal force when attached to a wall, as it cannot exert a pushing force. The tension in the string is directed along its length and does not contribute to a normal force perpendicular to the wall. The normal component of force arises only when there is weight acting on the string, such as a hanging mass. If the mass is removed, the string becomes limp and exerts no force. Therefore, the presence of tension alone does not result in a normal force at the attachment point.
laser
Messages
104
Reaction score
17
Homework Statement
Does a massless string cause a normal force when attached to a wall?
Relevant Equations
F=ma probably
1702134312752.png

I'm almost certain that if it was a "steel rod" or something heavy like that, the normal (the force written in green) would exist. But does it exist for a "massless ideal string"? I mean, there is tension in the string of course, but would that cause the normal perpendicular to the wall?
 
Physics news on Phys.org
At the point of attachment the string exerts tension that is directed along the string and away from the point of attachment (you can't push with a string). This tension has a normal component and a component parallel to the surface. It's not the weight of the string that is the cause of this force but the weight of the ball hanging at the other end of the string that keeps the string taut. If you remove the ball, the string will go limp and exert no force if it is massless.
 
Would the cart shown in the attached diagram remain where represented when "there is tension in the string of course"?

Spehre cart.jpg
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top