MHB Does \(B\) Span Algebraically \(E\) Over \(F\)?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $E/F$ be an extension, $S=\{a_1,\ldots,a_n\}\subseteq E$ algebraically independent over $F$ and $S\subseteq T$, $T$ a subset of $E$, that spans $E$ algebraically over $F$.

I want to show that there exists a set $B$ between $S$ and $T$, that is a trancendental basis of $E/F$, as follows:

Let $T\setminus S=\{\beta_1,\ldots ,\beta_m\}$.

If $T=\varnothing$, then $B=S$ is the trancendental basis.

Otherwise, we define $S_0=S$ and for $i=1,\ldots ,m$

$S_i=\left\{\begin{matrix} S_{i-1} & \text{ if } \beta_i \text{ is algebraic } /F(S_{i-1})\\ S_{i-1}\cup \{\beta_i\} & \text{ if } \beta_i \text{ is not algebraic } /F(S_{i-1}) \end{matrix}\right.$

I want to show that that $B=S_m$ is the trancendental basis of $E/F$.

I have shown that $S_m$ is $F$-algebraically independent.

So, it is left to show that $S_m$ spans algebraically $E$ over $F$. Could you give me some hints how we could show that? (Wondering)
 
Physics news on Phys.org
To show that $S_m$ spans algebraically $E$ over $F$, we have to show that $E/F(S_m)$ is algebraic, right?

We have that the extension $E/F(T)$ is algebraic.

It holds that $S_m\subseteq T$, or not?

Do we know if $F(S_m)\leq F(T)$ or $F(T)\leq F(S_m)$ ? (Wondering)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top