MHB Does \(B\) Span Algebraically \(E\) Over \(F\)?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $E/F$ be an extension, $S=\{a_1,\ldots,a_n\}\subseteq E$ algebraically independent over $F$ and $S\subseteq T$, $T$ a subset of $E$, that spans $E$ algebraically over $F$.

I want to show that there exists a set $B$ between $S$ and $T$, that is a trancendental basis of $E/F$, as follows:

Let $T\setminus S=\{\beta_1,\ldots ,\beta_m\}$.

If $T=\varnothing$, then $B=S$ is the trancendental basis.

Otherwise, we define $S_0=S$ and for $i=1,\ldots ,m$

$S_i=\left\{\begin{matrix} S_{i-1} & \text{ if } \beta_i \text{ is algebraic } /F(S_{i-1})\\ S_{i-1}\cup \{\beta_i\} & \text{ if } \beta_i \text{ is not algebraic } /F(S_{i-1}) \end{matrix}\right.$

I want to show that that $B=S_m$ is the trancendental basis of $E/F$.

I have shown that $S_m$ is $F$-algebraically independent.

So, it is left to show that $S_m$ spans algebraically $E$ over $F$. Could you give me some hints how we could show that? (Wondering)
 
Physics news on Phys.org
To show that $S_m$ spans algebraically $E$ over $F$, we have to show that $E/F(S_m)$ is algebraic, right?

We have that the extension $E/F(T)$ is algebraic.

It holds that $S_m\subseteq T$, or not?

Do we know if $F(S_m)\leq F(T)$ or $F(T)\leq F(S_m)$ ? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 5 ·
Replies
5
Views
840
  • · Replies 3 ·
Replies
3
Views
778