MHB Does it suffice to show these relations?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Relations
Click For Summary
To prove the equivalence of the statements $A \cap B = A$, $A \subset B$, and $A \cup B = B$, it is sufficient to demonstrate three implications, which can be chosen in various orders. Showing $P \implies Q$, $Q \implies R$, and $R \implies P$ is one valid approach, but other combinations are also acceptable. It is unnecessary to explicitly prove every implication, as demonstrating two can imply the third. However, proving additional implications, such as $Q \Rightarrow P$, is not incorrect and may simplify the proof. Ultimately, the goal is to choose an ordering that leads to the simplest proof.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Wave)

If I want to prove that $A \cap B=A \text{ iff } A \subset B \text{ iff } A \cup B=B$.
Do I have to prove the following:
$A \cap B=A \rightarrow A \subset B$, $A \subset B \rightarrow A \cap B=A, A \subset B \rightarrow A \cup B=B, A \cup B=B \rightarrow A \subset B $ and $A \cup B=B \rightarrow A \cap B=A$ ? :confused:
 
Physics news on Phys.org
To show $P\iff Q\iff R$ it is sufficient to prove, for example, $P\implies Q$, $Q\implies R$ and $R\implies P$. At least three implications are necessary, but they can be chosen in different ways.
 
Evgeny.Makarov said:
To show $P\iff Q\iff R$ it is sufficient to prove, for example, $P\implies Q$, $Q\implies R$ and $R\implies P$. At least three implications are necessary, but they can be chosen in different ways.

So, don't we have to show, for example, $Q \Rightarrow P$ ? (Thinking)
 
evinda said:
So, don't we have to show, for example, $Q \Rightarrow P$ ? (Thinking)

If you can show $Q \Rightarrow R$ and $R \Rightarrow P$, that immediately implies $Q \Rightarrow P$; it is unnecessary to show it explicitly.
 
magneto said:
If you can show $Q \Rightarrow R$ and $R \Rightarrow P$, that immediately implies $Q \Rightarrow P$; it is unnecessary to show it explicitly.

A ok.. But, if I would prove also $Q \Rightarrow P$, would it be wrong? :confused:
 
evinda said:
A ok.. But, if I would prove also $Q \Rightarrow P$, would it be wrong? :confused:

It is not wrong. You can show the implications in any order: E.g $Q \Rightarrow P \Rightarrow R \Rightarrow Q$, or $R \Rightarrow P \Rightarrow Q \Rightarrow R$.

In fact, you usually want to choose an ordering that makes the proof the simplest if possible.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K