I Does K-40 Capture Electrons With Orbital Angular Momentum?

  • I
  • Thread starter Thread starter snorkack
  • Start date Start date
  • Tags Tags
    Capture
snorkack
Messages
2,388
Reaction score
536
TL;DR Summary
Handling of spin in electron capture
K-40 often captures electrons. This is why Earth atmosphere is full of Ar-40.
Where does K-40 capture electrons from?
The problem is that K-40 has spin 4. Ar-40 has spin 0.
How are the 4 spin units handled?
The spins of the electron and neutrino combine to at most 1. This leaves 3 spin units to handle. How?
By emitting the neutrino with an orbital angular momentum? Or by capturing electron with orbital angular momentum?
Orbital angular momentum is not found in K-shell (it is 1s orbital, no angular momentum). Does K-40 preferentially capture outer electrons which do have angular momentum?
 
  • Like
Likes ohwilleke and vanhees71
Physics news on Phys.org
snorkack said:
Summary: Handling of spin in electron capture

K-40 often captures electrons. This is why Earth atmosphere is full of Ar-40.
About 11% of K-40 decays are due to electron capture.
I would not say that the atmosphere is full of Ar-40, that is a bit of an exaggeration.

snorkack said:
Where does K-40 capture electrons from?
From the electons bound to the nuclei, they have a small probability to be located close enough to the nucleus such that the process ##e^- + p \to n + \nu + \gamma## occurs.
Neutron remain in nucleus, Ar-40 is formed.
The photon is not emitted directly, the Ar-40 is formed in an excited state with some non-zero angular momentum. The emission of the photon will carry away that excess angular momentum so that the final state nuclei has spin 0. It is also thanks to this photon that we can use K-40 for radioactive dating (give it a try next valentines day!)
snorkack said:
Does K-40 preferentially capture outer electrons which do have angular momentum?
No, because such electron states have extremely low probability to be near the nuclei.

1658872245440.png

Nice picture from: https://www.radioactivity.eu.com/site/pages/Potassium_40.htm
 
malawi_glenn said:
we can use K-40 for radioactive dating (give it a try next valentines day!)
Har! Har! Har! :rolleyes:
 
ohwilleke said:
Har! Har! Har! :rolleyes:
Oh honey you look radiant!
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...

Similar threads

Back
Top