1977ub said:
The first leg extends upward by a mile.
Ah, I see, you were talking about a vertical construction. Sorry for the confusion on my part. Now the issue is that the Earth's curvature will make the top and bottom legs of the square not sit flat on the ground, if you make accurate enough measurements. (The Earth's surface curves about 1/8 of an inch per mile, IIRC, which is well within our current capabilities to detect.) Also, the vertical legs of the square will not be exactly radial--that is, they won't be pointing exactly at the center of the Earth. But let's ignore all that since it's a different issue than the one you are raising.
The non-Euclideanness of space due to the Earth's mass will not prevent you from constructing this square, no. But here's what it *will* do. Suppose the Earth were a perfect sphere; then its area is equal to the area of a 2-sphere that is exactly tangent to the bottom side of the square. The area of a 2-sphere exactly centered on the Earth and exactly tangent to the *top* side of the square will then be slightly *less* than what you would expect based on Euclidean geometry.
In other words, we have the area of Earth's surface, A, and the area of the 2-sphere centered on the Earth and tangent to the top side of the square, A + dA. Based on the vertical sides of the square being of length s each (s = 1 mile, but I'll just use s in the formulas below), we expect to find
dA = 4 \pi \left[ \left( r + s \right)^2 - r ^2 \right] = 8 \pi R s
where R is the radius of the Earth, and we have used the fact that s << r. But what we will actually find is
dA = 8 \pi R s \sqrt{1 - 2 G M / c^2 R}
which, again, will be smaller than the Euclidean result by about 7 parts in 10 billion.