Does Mechanical Energy of a Planet Change in an Elliptical Orbit?

Click For Summary
The mechanical energy (ME) of a planet in an elliptical orbit remains constant throughout its motion, as the total mechanical energy of the system is conserved. While the planet's kinetic and potential energy fluctuate during the orbit, the sum of these energies, which constitutes the mechanical energy, does not change. The precise definition of ME in a two-body system includes both kinetic energy due to the planet's velocity and gravitational potential energy relative to the star. Thus, even though the individual components of ME vary, the overall mechanical energy remains constant. Understanding this principle is essential for analyzing planetary motion in elliptical orbits.
mancity
Messages
26
Reaction score
2
Homework Statement
Given an elliptical planetary orbit of a planet and a star, do:
(a) the mechanical energy of the planet change during the orbit? If so, describe the motion.
(b) the mechanical energy of the planet-star system change during the orbit? If so, describe the motion.
Relevant Equations
ME=KE+PE
Obviously the mechanical energy of the total system remains the same.

But I'm having a hard time determining of the ME of the planet is constant or if it is changing.
 
Physics news on Phys.org
mancity said:
Homework Statement: Given an elliptical planetary orbit of a planet and a star, do:
(a) the mechanical energy of the planet change during the orbit? If so, describe the motion.

But I'm having a hard time determining of the ME of the planet is constant or if it is changing.
What's the precise definition of the ME of a planet that is part of a two-body system?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
10K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K