Does n² has all the factors n has? How can I be sure?

  • Thread starter Thread starter MonkeyKid
  • Start date Start date
  • Tags Tags
    Factors
Click For Summary
The discussion revolves around whether n² contains all the factors of n. The contributor believes that n² does include all factors of n but struggles to formulate a formal proof. They provide a reasoning approach by demonstrating that if n is expressed as a product of its factors, then n² can also be expressed in a way that shows at least one factor of n is retained in n². The conversation shifts to the realization that the focus should be on prime factors, indicating a deeper understanding of the topic. Overall, the discussion highlights the connection between a number and its square in terms of factors.
MonkeyKid
Messages
25
Reaction score
0
First of all, pardon me for my poor English, which is even worse for mathematics.

As an answer to my question, I think it does have all the factors n has. But I can't write mathematical proof of it, and so I can't make that statement. It's probably easy. I can write that in the opposite direction though:

let a, b, c, ..., z be the factors of N:

(a * b * c * ... * z) = N

then

(a * b * c * ... * z)² = N²
(pretty simple thinking)

but I can't write that in the other direction... I mean, beginning with N² and it's factors, conclude that it has at least all the factors N has.
 
Mathematics news on Phys.org
Well, let's write ##N = a_1 a_2 \ldots a_n## and choose any factor, say ##a_1##. Then ##N^2 = (a_1 a_2 \ldots a_n)(a_1 a_2 \ldots a_n) = a_1*X## where ##X = (a_2 a_3 \ldots a_n)*N##. Therefore ##a_1## is a factor of ##N^2##.

[edited] to use better notation
 
Last edited:
jbunniii said:
Well, let's write ##N = a_1 a_2 \ldots a_n## and choose any factor, say ##a_1##. Then ##N^2 = (a_1 a_2 \ldots a_n)(a_1 a_2 \ldots a_n) = a_1*X## where ##X = (a_2 a_3 \ldots a_n)*N##. Therefore ##a_1## is a factor of ##N^2##.

[edited] to use better notation

Thank you, it took me a while to understand, because I forgot I was talking about prime factors. In fact I was, and the title should be different. My mistake. I'm glad you saw through it. That's a neat explanation by the way. I like math more and more with each passing day.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
Replies
7
Views
2K
Replies
1
Views
2K