humanino said:
Certainly not, unless they did not evolve for 50 years. The mass is a constant, similar to the electric charge, caracteristic of a particle properties under space-time symmetry (Loretnz group representation). Please read https://www.worldscientific.com/phy_etextbook/6833/6833_02.pdf on the question, which you could have found for instance from wikipedia.
From the PDF:
E sub o=mc^2 (1)
E=mc^2 (2)
E^2-p^2c^2=m^2c^4 (5)
P=v E/c^2 (6)
“Thus we obtain in the nonrelativistic limit the well known Newtonian equations for momentum and kinetic energy. This means that m in equation 5 is the ordinary Newtonian mass. Hence, if I were to use m sub o instead of m, the relativistic and nonrelativistic notation would not match.”
“If the notation m sub o and the term ‘rest mass’ are bad, why then are the notation E sub o and the term ‘rest energy’ good? The answer is, because mass is a relativistic invariant and is the same in different reference systems, while energy is the fourth component of a four-vector (E,p) and is different in different reference systems. The index 0 in E sub o indicates the rest system of the body.”
“Let us look again at the equations 5 and 6, and consider them in the case when m=0, the extreme ‘anti-Newtonian’ case. We see that in this case the velocity of the body is equal to that of light: v=c in any reference system. There is no rest frame for such bodies. They have no rest energy; their total energy is purely kinetic."
So from that PDF, “equations 5 and 6 describe the kinematics of a free body for all velocities from 0 to c, and equation 1 follows from them directly. Every physicist who knows special relativity will agree on this.”
“On the other hand, every physicist and many nonphysicists are familiar with ‘the famous Einstein formula E=mc^2.’ But it is evident that equations 1 and 2, E sub o=mc^2 and E=mc^2, are absolutely different. According to equation 1, m is constant and the photon is massless. According to equation 2, m depends on energy (on velocity) and the photon has mass m=E/c^2.”
So (5) and (6) give us equation 1 which is one of Einstein’s great discoveries, energy is equal to rest mass times the speed of light when velocity and momentum are 0, i.e. Newtonian and nonrelativistic. But as Einstein said in a letter to Lincoln Barnett, 19 June 1948, “It is not good to introduce the concept of mass M=m/(1-v^2/c^2)^1/2 of a moving body for which no clear definition can be given. It is better to introduce no other mass concept than the ‘rest mass’ m. Instead of introducing M it is better to mention the expression for the momentum and energy of a body in motion.”
So can you say how the physicist at the LHC would describe the mass/energy of the accelerated particles? Is it simply that they would refer to the energy of the particles and not m, not M, but total energy?