B Does Space Recover or Oscillate After Being Distorted by Massive Objects?

  • B
  • Thread starter Thread starter pforeman
  • Start date Start date
  • Tags Tags
    Fabric of space
pforeman
Messages
21
Reaction score
0
When a massive object travels through space distorting its geometry, does the space gradually revert to its previous state, or does it oscillate back and forth eventually settling into its state as it was before it was distorted by the massive object ?
If the fabric of of space has a high tension value, then this would be a lot of energy added to space and might affect Hubbles constant ?
When watching the LIGO recording of two black holes merging, could the end of the gravitational wave recorded be from the fabric of space reverberating.
 
Physics news on Phys.org
There is no "fabric" of spacetime. Spacetime is geometry. It's where things happen, not a thing itself.
 
Last edited:
Neither. It is simply not how things work. Furthermore, gravity is the geometry of spacetime, not space. The time part is extremely important.
 
Unfortunately, "fabric" is a metaphor, and quite a poor one.

Relativity models spacetime, not space. Spacetime is a 4d structure, and to get what we call "space" from it you have to (mathematically) slice it into a stack of 3d sheets, analogous to slicing a block of cheese into a stack of 2d slices. Each slice is "space at one instant", and the notion of the geometry of space changing with time comes from looking at each successive slice, not from any single thing changing. Furthermore, as Orodruin notes, quite a lot of the important curvature lies in planes orthogonal to any such slicing and is lost in this visualisation.

The animations of gravitational waves that I've found on a quick search describe themselves as showing "the strength of curvature", so I doubt they're even direct representations of any choice of space. They're likely plots of some summary parameter like the Kretchmann scalar.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top