I Does Special Relativity Affect Mass?

The_Baron
Messages
3
Reaction score
0
Is mass relative? does the faster you go change your mass? Because according to the Energy calculations E = ymc^2 at speed and mc^2 and since the speed of light is constant, does that mean that mass changes?

[Thread edited by a Mentor to remove personal speculation]
 
Last edited by a moderator:
Physics news on Phys.org
The_Baron said:
Is mass relative? does the faster you go change your mass? Because according to the Energy calculations E = ymc^2 at speed and mc^2 and since the speed of light is constant, does that mean that mass changes?
No. You are thinking of the LONG deprecated concept of "relativistic mass". You, right now as you read this, are traveling at very close to the speed of light (relative to a particle in the CERN accelerator). Did knowing that make you feel more massive?
 
  • Like
Likes vanhees71 and Dale
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top