A Does strain affect on-site energy?

  • Thread starter Thread starter Mohammad-gl
  • Start date Start date
  • Tags Tags
    Energy Strain
Click For Summary
Strain significantly influences on-site energy in materials, particularly in the context of quantum mechanics and 2D materials. As stress increases, energy is stored elastically until reaching a yield point, after which plastic deformation occurs, leaving residual internal energy. The relationship between strain and energy can be modeled using density functional theory (DFT), where atomic positions are optimized to find the lowest energy state. Tight-binding methods can also be employed to calculate on-site energy under strain, although they typically focus on the hopping Hamiltonian rather than the on-site Hamiltonian. Overall, understanding the effects of strain on on-site energy requires careful modeling and consideration of the material's atomic structure.
Mohammad-gl
Messages
29
Reaction score
4
TL;DR
Does strain affects on-site energy? Is there any formula which connect strain and on-site energy?
I want to study strain effects on the one material which has non-zero on-site energy . Does strain affects on-site energies?
 
Physics news on Phys.org
I guess by “on-site energy”, you mean “internal energy”?

As stress increases, the strain increases, and energy is stored in the elastic material.
There is a yield point, where the stress is partially relieved by plastic deformation.

If the stress is then removed the elastic strain will be reduced, but there will be some energy remaining in plastic strain where adjacent grains in the material have undergone different plastic deformation.

“Work hardening” is associated with remaining internal energy.
https://en.wikipedia.org/wiki/Work_hardening
“Annealing” can relieve the remaining internal energy.

The internal energy that remains will depend on the state of the grains within the material.
What is that material and what do you know about the internal grain structure?
 
Baluncore said:
I guess by “on-site energy”, you mean “internal energy”?

As stress increases, the strain increases, and energy is stored in the elastic material.
There is a yield point, where the stress is partially relieved by plastic deformation.

If the stress is then removed the elastic strain will be reduced, but there will be some energy remaining in plastic strain where adjacent grains in the material have undergone different plastic deformation.

“Work hardening” is associated with remaining internal energy.
https://en.wikipedia.org/wiki/Work_hardening
“Annealing” can relieve the remaining internal energy.

The internal energy that remains will depend on the state of the grains within the material.
What is that material and what do you know about the internal grain structure?
Thank you
But I mean exactly on-site energy not internal.
On-site energy is a constant in Hamiltonian matrix
 
OK, so my mind reading skills are sadly lacking.
What sort of strain are you referring to here ?
Is this Quantum Theory, or strength of materials ?
If you actually specify the subject, you may get a better answer.
 
Baluncore said:
OK, so my mind reading skills are sadly lacking.
What sort of strain are you referring to here ?
Is this Quantum Theory, or strength of materials ?
If you actually specify the subject, you may get a better answer.
Yes this problem is related to the Quantum mechanic and is about 2D materials.
 
If I understand what you are asking, the answer is yes. Strain will affect the energy of an individual atom in the lattice. There is no simple formula I know of, it has to be solved with DFT. The typical method is to model the lattice with matched boundary conditions, but your unit cell is actually several unit cells large. You allow the atomic positions to migrate to the lowest energy position. Then take your optimized lattice and model again with one atom popped out, without allowing atoms to migrate. The difference is the "site energy" you're looking for. When you do this kind of modeling, you'll see it converge to a value as you increase the number of unit cells, i.e. 3x3 then 4x4 then 5x5. It doesn't take much to get rid of edge effects.
 
  • Like
Likes Mohammad-gl
crashcat said:
If I understand what you are asking, the answer is yes. Strain will affect the energy of an individual atom in the lattice. There is no simple formula I know of, it has to be solved with DFT. The typical method is to model the lattice with matched boundary conditions, but your unit cell is actually several unit cells large. You allow the atomic positions to migrate to the lowest energy position. Then take your optimized lattice and model again with one atom popped out, without allowing atoms to migrate. The difference is the "site energy" you're looking for. When you do this kind of modeling, you'll see it converge to a value as you increase the number of unit cells, i.e. 3x3 then 4x4 then 5x5. It doesn't take much to get rid of edge effects.
Thank you so much.
Is there any tight-binding method for calculating on-site energy under strain?
 
crashcat said:
If I understand what you are asking, the answer is yes. Strain will affect the energy of an individual atom in the lattice. There is no simple formula I know of, it has to be solved with DFT. The typical method is to model the lattice with matched boundary conditions, but your unit cell is actually several unit cells large. You allow the atomic positions to migrate to the lowest energy position. Then take your optimized lattice and model again with one atom popped out, without allowing atoms to migrate. The difference is the "site energy" you're looking for. When you do this kind of modeling, you'll see it converge to a value as you increase the number of unit cells, i.e. 3x3 then 4x4 then 5x5. It doesn't take much to get rid of edge effects.
Hi @crashcat , can you provide an example of this from the literature? Whenever I see strain treated via tight binding, I only ever see it entering in the hopping Hamiltonian, rather than the on-site Hamiltonian (example: https://arxiv.org/abs/1511.06254).
 
  • Like
Likes Mohammad-gl
  • #10
The answer is definitely yes.
Yo can use strain to experimentally tune (and map out) the energy of individual defects and if you model these as simple two-level systems the level splitting will have a strain term.

Calculating this from 1st principles is really tricky for real materials. That said, it might be easier for a 2D material.
 
  • Like
Likes Mohammad-gl

Similar threads

Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
8
Views
2K
Replies
5
Views
1K
Replies
7
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K