Does the Alternating Binomial Sum Formula Hold for All Positive Integers?

Click For Summary
SUMMARY

The Alternating Binomial Sum Formula holds true for all positive integers n, as demonstrated in the discussion. The formula states that the sum $$\binom{n}{1} - \frac{1}{2}\binom{n}{2} + \cdots + (-1)^{n-1}\frac{1}{n}\binom{n}{n}$$ equals the harmonic sum $$1 + \frac{1}{2} + \cdots + \frac{1}{n}$$. This conclusion is supported by combinatorial arguments and mathematical induction, confirming the relationship between binomial coefficients and harmonic numbers.

PREREQUISITES
  • Understanding of binomial coefficients, specifically $$\binom{n}{k}$$
  • Familiarity with harmonic numbers and their properties
  • Basic knowledge of mathematical induction techniques
  • Proficiency in combinatorial mathematics
NEXT STEPS
  • Study the properties of binomial coefficients in depth
  • Explore harmonic numbers and their applications in number theory
  • Learn advanced techniques in mathematical induction
  • Investigate combinatorial proofs and their significance in mathematics
USEFUL FOR

Mathematicians, educators, and students interested in combinatorial mathematics, number theory, and the relationships between binomial coefficients and harmonic sums.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Show that for all positive integers ##n##, $$\binom{n}{1} - \frac{1}{2}\binom{n}{2} + \cdots + (-1)^{n-1}\frac{1}{n}\binom{n}{n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
We have:

\begin{align*}
-\frac{(1-x)^n}{x} = - \binom{n}{0} \frac{1}{x} + \binom{n}{1} - \binom{n}{2} x + \cdots + (-1)^{n-1} \binom{n}{n} x^{n-1}
\end{align*}

So that

\begin{align*}
\int_0^1 \frac{1 - (1-x)^n}{x} dx = \binom{n}{1} - \frac{1}{2} \binom{n}{2} + \cdots + (-1)^{n-1} \frac{1}{n} \binom{n}{n}
\end{align*}

Making the substitution ##y=1-x##, we obtain

\begin{align*}
\int_0^1 \frac{1 - (1-x)^n}{x} dx = \int_0^1 \frac{1 - y^n}{1-y} dy = \int_0^1 [1 + y + y^2 + \cdots y^{n-1}] dy = 1 + \frac{1}{2} + \cdots + \frac{1}{n}
\end{align*}
 
  • Like
Likes   Reactions: anuttarasammyak and topsquark

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K