POTW Does the Alternating Binomial Sum Formula Hold for All Positive Integers?

Click For Summary
The discussion centers on proving that the alternating binomial sum formula holds for all positive integers n. The formula states that the sum of binomial coefficients with alternating signs equals the harmonic sum of the first n positive integers. Participants explore various methods of proof, including combinatorial arguments and algebraic manipulations. The consensus is that the formula is indeed valid for all positive integers, reinforcing its significance in combinatorial mathematics. This conclusion highlights the relationship between binomial coefficients and harmonic numbers.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Show that for all positive integers ##n##, $$\binom{n}{1} - \frac{1}{2}\binom{n}{2} + \cdots + (-1)^{n-1}\frac{1}{n}\binom{n}{n} = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$
 
Physics news on Phys.org
We have:

\begin{align*}
-\frac{(1-x)^n}{x} = - \binom{n}{0} \frac{1}{x} + \binom{n}{1} - \binom{n}{2} x + \cdots + (-1)^{n-1} \binom{n}{n} x^{n-1}
\end{align*}

So that

\begin{align*}
\int_0^1 \frac{1 - (1-x)^n}{x} dx = \binom{n}{1} - \frac{1}{2} \binom{n}{2} + \cdots + (-1)^{n-1} \frac{1}{n} \binom{n}{n}
\end{align*}

Making the substitution ##y=1-x##, we obtain

\begin{align*}
\int_0^1 \frac{1 - (1-x)^n}{x} dx = \int_0^1 \frac{1 - y^n}{1-y} dy = \int_0^1 [1 + y + y^2 + \cdots y^{n-1}] dy = 1 + \frac{1}{2} + \cdots + \frac{1}{n}
\end{align*}
 
  • Like
Likes anuttarasammyak and topsquark

Similar threads

Replies
3
Views
2K
Replies
17
Views
3K
Replies
9
Views
3K
Replies
3
Views
2K
Replies
3
Views
2K
Replies
15
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K