MHB Does the Comparison Test Determine Convergence or Divergence of Series?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use the comparison test to determine if the series series convergences or divergences
$$S_{6}=\sum_{n=1}^{\infty} \dfrac{1}{n^2 \ln{n} -10}$$
ok if i follow the example given the next step alegedly would be...
$$\dfrac{1}{n^2 \ln{n} -10}<\dfrac{1}{n^2 \ln{n}}$$
$\tiny{242 UHM}$
 
Last edited:
Physics news on Phys.org
note ...

$n^2\ln(n)-10 < n^2\ln(n) \implies \dfrac{1}{n^2\ln(n) - 10} > \dfrac{1}{n^2\ln(n)}$

$\displaystyle \sum \dfrac{1}{n^2\ln(n)} < \sum \dfrac{1}{n^2}$ converges ... so the comparison above isn't going to fly.
 
oh ..

why put the $\sum $ back in ??
 
karush said:
oh ..

why put the $\sum $ back in ??

The goal is to compare series, not just the nth term.Let's compare $$\sum \frac{1}{n^2\ln(n)-10}$$ with the known convergent series $$\sum \frac{1}{n^2}$$

if $$\sum \frac{1}{n^2\ln(n)-10} < \sum \frac{1}{n^2}$$ for large enough $n$, then we can say $$\sum \frac{1}{n^2\ln(n)-10}$$ converges

first off, we need to find what values of $n$ make $$\frac{1}{n^2\ln(n)-10} < \frac{1}{n^2}$$

for that inequality to be true ...

$n^2\ln(n) - 10 > n^2$

$n^2\ln(n) - n^2 > 10$

$n^2[\ln(n)-1] > 10 \implies n \ge 5$

so, $$\sum_{n=5}^\infty \frac{1}{n^2\ln(n)-10} < \sum_{n=5}^\infty \frac{1}{n^2} \implies \sum_{n=5}^\infty \frac{1}{n^2\ln(n)-10}$$ converges.
 

Similar threads

Replies
17
Views
5K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
8
Views
1K
Replies
3
Views
3K
Replies
3
Views
1K
Replies
4
Views
2K
Back
Top