MHB Does the Existence and Uniqueness Theorem Guarantee Solutions for dy/dx = 2xy²?

find_the_fun
Messages
147
Reaction score
0
Given $$\frac{dy}{dx} =2xy^2$$ and the point $$y(x_0)=y_0$$ what does the existence and uniqueness theorem (the basic one) say about the solutions?

1) $$2xy^2$$ is continuous everywhere. Therefore a solution exists everywhere
2) $$\frac{\partial }{\partial y} (2xy^2) = 4xy$$ which is continuous everywhere. Therefore the solution is unique everywhere.

Is this all? What does the point $$y(x_0)=y_0$$ have to do with it? I actually couldn't find any fully worked examples of the existence and uniqueness theorem. Is there a way I should be writing the answers that is more mathy?
 
Physics news on Phys.org
find_the_fun said:
Given $$\frac{dy}{dx} =2xy^2$$ and the point $$y(x_0)=y_0$$ what does the existence and uniqueness theorem (the basic one) say about the solutions?

1) $$2xy^2$$ is continuous everywhere. Therefore a solution exists everywhere.

Actually not. $f(x,y)$ must be Lipschitz continuous in $y$ and continuous in $x$ in order to guarantee existence and uniqueness. $f(x,y)=2xy^2$ is continuous in $x$, but it is not Lipschitz continuous in $y$. Now, it is locally Lipschitz continuous in $y$; if you wanted to argue that on any finite interval containing $x_0$ there exists a unique solution, you'd be on solid ground.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 1 ·
Replies
1
Views
432
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
13K
  • · Replies 1 ·
Replies
1
Views
2K