Does the sequence $(a^n b^{n^2})$ converge for all values of $a$ and $b$?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Convergence Sequence
Click For Summary

Discussion Overview

The discussion revolves around the convergence of the sequence $(a^n b^{n^2})$ for various values of $a$ and $b$. Participants explore different cases based on the values of $a$ and $b$, considering both theoretical implications and specific scenarios.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants note that $\lim_{n \to +\infty} a^n=+\infty$ if $a>1$ and $\lim_{n \to +\infty} a^n=0$ if $-1
  • It is proposed that if $a>0$ and $b>1$, then $\lim_{n \to +\infty} (ab^n)^n=+\infty$.
  • For $a<0$ and $b>1$, participants express uncertainty about the limit of $(ab^n)^n$ as $n$ approaches infinity.
  • When $0
  • Participants discuss that for $a=0$ or $b=0$, the sequence converges automatically, leading to a focus on $a\neq 0$ and $b\neq 0$.
  • In the case where $|b|<1$, it is argued that the sequence converges to 0, while for $|b|>1$, the sequence is unbounded and diverges.
  • For $b=\pm 1$, it is noted that the convergence of $(ab^n)^n$ relates to the convergence of $a^n$ or $a^n(-1)^{n^2}$, raising questions about their relationships.
  • Participants discuss the nature of the sequence $(-1)^{n^2}$, noting that it does not converge due to the presence of two convergent subsequences.

Areas of Agreement / Disagreement

Participants generally agree on some cases of convergence and divergence, but multiple competing views remain regarding the behavior of the sequence under different conditions, particularly for negative values of $a$ and $b$. The discussion remains unresolved in certain aspects, especially concerning the implications of $b=\pm 1$.

Contextual Notes

Limitations include the dependence on the values of $a$ and $b$, as well as the need for further clarification on specific cases, particularly when $b$ is negative or equal to 1 or -1.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to check as for the convergence the sequence $(a^n b^{n^2})$ for all the possible values that $a,b$ take.

I have thought the following:

We have that $\lim_{n \to +\infty} a^n=+\infty$ if $a>1$, $\lim_{n \to +\infty} a^n=0$ if $-1<a<1$, right?

What happens for $a<-1$ ? :confused:

We have that $a^n b^{n^2}=(ab^n)^n$.

If $a>0$, $b>1$ then $\lim_{n \to +\infty} (ab^n)=+\infty$ and thus $\lim_{n \to +\infty} (ab^n)^n=+\infty$.

If $a<0$, $b>1$, then $\lim_{n \to +\infty} (ab^n)=-\infty$. Then what can we say about $\lim_{n \to +\infty} (ab^n)^n$ ?

If $0<b<1$, then $\lim_{n \to +\infty} (ab^n)=0$ and thus $\lim_{n \to +\infty} (ab^n)^n=\lim_{n \to +\infty} 0=0$.

Am I right so far?

If $b<0$, what can we say about the desired limit? (Thinking)
 
Physics news on Phys.org
Hi evinda,

Your analysis is certainly on the right track. By using two facts we can reduce the number of cases that need to be considered:
  1. $\displaystyle\lim_{n}|x_{n}|=0$ if and only if $\displaystyle\lim_{n} x_{n}=0.$
  2. If $\displaystyle\lim_{n}|x_{n}|=\infty$, then $x_{n}$ is an unbounded sequence.
The first statement can be proved using the definition of the limit of a sequence. The second can be established via contradiction and the definition of a bounded sequence.

For $a=0$ or $b=0$ we see that the sequence converges automatically. Thus, in what follows we always consider $a\neq 0$ and $b\neq 0$.

Case 1: $|b|<1.$

By writing $y_{n}=(ab^{n})^{n}$ we see that $$|y_{n}|=e^{n\ln|a|+n^{2}\ln|b|}.$$ Since $|b|<1$, $\ln|b|<0$ and the presence of the term $n^{2}$ above will guarantee the dominance of $n^{2}\ln|b|.$ Hence, $$\lim_{n}|y_{n}|= e^{-\infty}= 0.$$ Using Fact 1 above, we have $\displaystyle\lim_{n}(ab^{n})^{n}=0.$

Case 2: $|b|>1.$

We have $|ab^{n}|=|a||b|^{n}\rightarrow\infty~~\Longrightarrow~~|(ab^{n})^{n}|\rightarrow\infty.$ Using Fact 2, it follows that $(ab^{n})^{n}$ is unbounded and, therefore, must necessarily diverge.

Remaining Cases: $b=\pm 1.$

I will leave this to you.

Hopefully by reducing the number of cases the problem is more tractable. Let me know if anything requires further clarification.
 
GJA said:
Hi evinda,

Your analysis is certainly on the right track. By using two facts we can reduce the number of cases that need to be considered:
  1. $\displaystyle\lim_{n}|x_{n}|=0$ if and only if $\displaystyle\lim_{n} x_{n}=0.$
  2. If $\displaystyle\lim_{n}|x_{n}|=\infty$, then $x_{n}$ is an unbounded sequence.
The first statement can be proved using the definition of the limit of a sequence. The second can be established via contradiction and the definition of a bounded sequence.

For $a=0$ or $b=0$ we see that the sequence converges automatically. Thus, in what follows we always consider $a\neq 0$ and $b\neq 0$.

Case 1: $|b|<1.$

By writing $y_{n}=(ab^{n})^{n}$ we see that $$|y_{n}|=e^{n\ln|a|+n^{2}\ln|b|}.$$ Since $|b|<1$, $\ln|b|<0$ and the presence of the term $n^{2}$ above will guarantee the dominance of $n^{2}\ln|b|.$ Hence, $$\lim_{n}|y_{n}|= e^{-\infty}= 0.$$ Using Fact 1 above, we have $\displaystyle\lim_{n}(ab^{n})^{n}=0.$

Case 2: $|b|>1.$

We have $|ab^{n}|=|a||b|^{n}\rightarrow\infty~~\Longrightarrow~~|(ab^{n})^{n}|\rightarrow\infty.$ Using Fact 2, it follows that $(ab^{n})^{n}$ is unbounded and, therefore, must necessarily diverge.

I see... (Yes)

GJA said:
Remaining Cases: $b=\pm 1.$

I will leave this to you.

Hopefully by reducing the number of cases the problem is more tractable. Let me know if anything requires further clarification.

For $b=1$, the convergence of the sequence $(ab^n)^n$ equals to the convergence of $a^n$ and for $b=-1$ the convergence of the sequence $(ab^n)^n$ equals to the convergence of $a^n(-1)^{n^2}$.

It doesn't hold that $a^n(-1)^{n^2}$ converges iff $a^n$ converges, does it? (Thinking)
 
evinda said:
For $b=1$, the convergence of the sequence $(ab^n)^n$ equals to the convergence of $a^n$ and for $b=-1$ the convergence of the sequence $(ab^n)^n$ equals to the convergence of $a^n(-1)^{n^2}$.

This is correct.

evinda said:
It doesn't hold that $a^n(-1)^{n^2}$ converges iff $a^n$ converges, does it? (Thinking)

This is not true - take $a=1$ as a counterexample.
 
GJA said:
This is correct.

Nice! (Smirk)

GJA said:
This is not true - take $a=1$ as a counterexample.

Ok, how do we show that $(-1)^{n^2}$ does not converge? (Thinking)
 
evinda said:
Ok, how do we show that $(-1)^{n^2}$ does not converge? (Thinking)

This is the alternating sequence $\{-1, 1, -1, 1,\ldots\}$ because $n^{2}$ is even iff $n$ is even. Moreover, the sequence possesses two convergent subsequences: $\{-1, -1, -1, \ldots\}$ and $\{1, 1, 1, \ldots\}$, which cannot happen for a convergent sequence.
 
GJA said:
This is the alternating sequence $\{-1, 1, -1, 1,\ldots\}$ because $n^{2}$ is even iff $n$ is even. Moreover, the sequence possesses two convergent subsequences: $\{-1, -1, -1, \ldots\}$ and $\{1, 1, 1, \ldots\}$, which cannot happen for a convergent sequence.

I see... Thanks a lot! (Happy)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K