MHB Does the Series $\sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}$ Converge?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The series $\sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}$ converges by the alternating series test. The terms $\frac{4}{5\ln{n}}$ decrease as $n$ increases, satisfying the conditions for convergence. Since $\ln(n)$ is a monotonically increasing function, its reciprocal is monotonically decreasing. Thus, the series meets the criteria for convergence established by the alternating series test. Overall, the series converges due to the behavior of its terms.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{10.6.10}\\ $
$\textsf{ converge or diverge?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}\\
&\frac{4}{5} \sum_{n=2}^{\infty} (-1)^n
\frac{1}{\ln{n}}=
\end{align*}
?
??
?

$\textit{converges: alternating series test}$
 
Physics news on Phys.org
karush said:
$\tiny{10.6.10}\\ $
$\textsf{ converge or diverge?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}\\
&\frac{4}{5} \sum_{n=2}^{\infty} (-1)^n
\frac{1}{\ln{n}}=
\end{align*}
?
??
?

$\textit{converges: alternating series test}$

Yes it converges as ln(n) is a decreasing function.
 

Similar threads