MHB Does the Series $\sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}$ Converge?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{10.6.10}\\ $
$\textsf{ converge or diverge?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}\\
&\frac{4}{5} \sum_{n=2}^{\infty} (-1)^n
\frac{1}{\ln{n}}=
\end{align*}
?
??
?

$\textit{converges: alternating series test}$
 
Physics news on Phys.org
karush said:
$\tiny{10.6.10}\\ $
$\textsf{ converge or diverge?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=2}^{\infty} (-1)^n \frac{4}{5\ln{n}}\\
&\frac{4}{5} \sum_{n=2}^{\infty} (-1)^n
\frac{1}{\ln{n}}=
\end{align*}
?
??
?

$\textit{converges: alternating series test}$

Yes it converges as ln(n) is a decreasing function.
 

Similar threads

Back
Top