MHB Does the Subring Generated by Two UFDs Always Result in a UFD?

AI Thread Summary
The discussion centers on whether the subring generated by two unique factorization domains (UFDs) is itself a UFD. It is established that while both $\mathbb{Z}[X^2]$ and $\mathbb{Z}[X^3]$ are UFDs, their generated subring $\mathbb{Z}[X^2, X^3]$ is not a UFD. This is demonstrated by the existence of two distinct factorizations of $X^6$ within the subring. Consequently, the answer to the original question is negative; the subring generated by two UFDs does not necessarily result in a UFD. The findings highlight the complexities in the structure of subrings formed from UFDs.
Petek
Gold Member
Messages
405
Reaction score
37
Let $R$ be an integral domain. Suppose that $R_1$ and $R_2$ are proper subrings of $R$ and that both $R_1$ and $R_2$ are unique factorization domains (UFDs). Let $R_3$ be the subring of $R$ that is generated by $R_1$ and $R_2$. Is $R_3$ necessarily a UFD? (The subring generated by two subrings is defined to be the intersection of all subrings containing the two given subrings.)
 
Last edited:
Mathematics news on Phys.org
My solution:

[sp]$\mathbb{Z}[X^2]$ and $\mathbb{Z}[X^3]$ are both UFDs. However, the subring they generate in $\mathbb{Z}[X]$, namely $\mathbb{Z}[X^2, X^3]$, is not a UFD because $X^6=X^2\cdot X^2\cdot X^2$ and $X^6=X^3 \cdot X^3$ are two distinct factorizations of $X^6$ into irreducible elements in $\mathbb{Z}[X^2, X^3]$.[/sp]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top