MHB Does the Wave Equation with Homogeneous Boundary Conditions Conserve Energy?

Markov2
Messages
149
Reaction score
0
Let $u\in\mathcal C^1(\overline R)\cap \mathcal C^2(R)$ where $R=(0,1)\times(0,\infty).$ Suppose that $u(x,t)$ verifies the following wave equation $u_{tt}=K^2 u_{xx}+h(x,t,u)$ where $K>0$ and $h$ is a constant function.

a) Determine the total energy of the string. (Well I don't know what does this mean.)

b) Show that if homogenous boundary conditions are imposed and no extern forces apply to the system, then there's conservation of the energy.

How do I start?
 
Physics news on Phys.org
Markov said:
Can anybody help please? :(

I suggested a cheap good book for you to get but you decided against it. Why didn't you buy a something (a book on the matter) that can help you start the problem?
 
Yes but I can't get that book. :(
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top