MHB Does the Wave Equation with Homogeneous Boundary Conditions Conserve Energy?

Markov2
Messages
149
Reaction score
0
Let $u\in\mathcal C^1(\overline R)\cap \mathcal C^2(R)$ where $R=(0,1)\times(0,\infty).$ Suppose that $u(x,t)$ verifies the following wave equation $u_{tt}=K^2 u_{xx}+h(x,t,u)$ where $K>0$ and $h$ is a constant function.

a) Determine the total energy of the string. (Well I don't know what does this mean.)

b) Show that if homogenous boundary conditions are imposed and no extern forces apply to the system, then there's conservation of the energy.

How do I start?
 
Physics news on Phys.org
Markov said:
Can anybody help please? :(

I suggested a cheap good book for you to get but you decided against it. Why didn't you buy a something (a book on the matter) that can help you start the problem?
 
Yes but I can't get that book. :(
 
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top