MHB Does the Wave Equation with Homogeneous Boundary Conditions Conserve Energy?

Markov2
Messages
149
Reaction score
0
Let $u\in\mathcal C^1(\overline R)\cap \mathcal C^2(R)$ where $R=(0,1)\times(0,\infty).$ Suppose that $u(x,t)$ verifies the following wave equation $u_{tt}=K^2 u_{xx}+h(x,t,u)$ where $K>0$ and $h$ is a constant function.

a) Determine the total energy of the string. (Well I don't know what does this mean.)

b) Show that if homogenous boundary conditions are imposed and no extern forces apply to the system, then there's conservation of the energy.

How do I start?
 
Physics news on Phys.org
Markov said:
Can anybody help please? :(

I suggested a cheap good book for you to get but you decided against it. Why didn't you buy a something (a book on the matter) that can help you start the problem?
 
Yes but I can't get that book. :(
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
0
Views
2K