Does there exist a surjection from the natural numbers to the reals?

Click For Summary

Homework Help Overview

The discussion revolves around the question of whether there exists a surjection from the natural numbers to the real numbers, touching on concepts of cardinality, bijections, and injections. Participants reference Cantor's proof and explore implications of surjective functions in the context of set theory.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the definitions of bijections, injections, and surjections, questioning the implications of these definitions on the existence of a surjection from the natural numbers to the reals. Some suggest constructing a function to derive a contradiction, while others analyze the properties of well-defined functions in relation to surjectivity.

Discussion Status

The discussion is active, with participants sharing ideas and questioning assumptions. Some have proposed methods to explore contradictions arising from the assumption of a surjection, while others seek clarification on specific points related to the definitions and properties of functions involved.

Contextual Notes

Participants note the importance of understanding the implications of existing theorems regarding bijections and cardinality, as well as the constraints imposed by the definitions of functions in set theory.

docnet
Messages
796
Reaction score
486
Homework Statement
1) What does it mean if two sets ##X## and ##Y## have the same cardinality?

2) Given sets ##A## and ##B## what does ##|A|\leq |B|## mean?

3) Does there exist a surjection from the natural numbers to the reals? If so, define one. If not, explain why one cannot exist.
Relevant Equations
##\mathbb{N}## and ## \mathbb{R}##
1)
Two sets have the same cardinality if there exists a bijection (one to one correspondence) from ##X## to ##Y##. Bijections are both injective and surjective. Such sets are said to be equipotent, or equinumerous. (credit to wiki)

2)
##|A|\leq |B|## means that there is an injective function from ##A## to ##B##. An injective function maps distinct elements of ##A## to distinct elements in ##B##.

3)
No.

Cantor's proof that there is no surjection ##f:\mathbb{N}\longrightarrow \mathbb{R}## seems relevant here.

I'm wondering if there is a lazier way to answer this question, although I think the following logic is flawed.

In class, we are given as a theorem that there is no bijection ##f:\mathbb{N}\longrightarrow \mathbb{R}##. Bijective functions are both injective and surjective, so there is no such ##f:\mathbb{N}\longrightarrow \mathbb{R}## that is both injective and surjective.

An example of an injection ##f:\mathbb{N}\longrightarrow \mathbb{R}##:

Let ##f:\mathbb{N}\longrightarrow \mathbb{R}## be a function defined by the rule ##f(n)=n##. ##f(n)\neq f(m)## whenever ##n\neq m##, so ##f## is injective. Since an injection ##f:\mathbb{N}\longrightarrow \mathbb{R}## was defined, it exists.

The issue is that this logic cannot deal with the possibility of an ##f## being surjective and not injective.
 
Last edited:
Physics news on Phys.org
You are right, including your assessment of the last argument. It does not help that there is an injection, or that there is no bijection. You must take a possible surjection and deduce a contradiction. Just an idea: Assume ##f\, : \,\mathbb{N}\longrightarrow \mathbb{R}## is surjective. Then ##\emptyset \neq f^{-1}(r)\subseteq \mathbb{N}## for every ##r\in \mathbb{R}.## Hence we have a well-defined smallest element ##\mathbb{N}\ni N_r\in f^{-1}(r)## for all ##r\in \mathbb{R}.## This defines a function ##r\longmapsto N_r\,.##
What can you say about it?
 
  • Like
  • Informative
Likes   Reactions: docnet, sysprog and PeroK
fresh_42 said:
You must take a possible surjection and deduce a contradiction. Just an idea: Assume ##f\, : \,\mathbb{N}\longrightarrow \mathbb{R}## is surjective. Then ##\emptyset \neq f^{-1}(r)\subseteq \mathbb{N}## for every ##r\in \mathbb{R}.## Hence we have a well-defined smallest element ##\mathbb{N}\ni N_r\in f^{-1}(r)## for all ##r\in \mathbb{R}.## This defines a function ##r\longmapsto N_r\,.##
What can you say about it?
##f## is surjective, so it is well-defined. So ##f(n)\neq f(m)\Longrightarrow n\neq m##. This leads to ##f^{-1}(f(m))\neq f^{-1}(f(n))## whenever ##m\neq n##. So the ##f^{-1}(r)## are disjoint in ##\mathbb{N}## for all ##r##. ##N_r\in f^{-1}(r)##. Hence the ##N_r## are disjoint for all ##r##. Hence ##r\longmapsto N_r## is injective.

(Is this okay?)

This means the image of ##r\longmapsto N_r## (we could call the set ##\mathbb{N}_r## for brevity) has a cardinality equal to ##|\mathbb{R}|=𝔠 ##. ##N_r\in \mathbb{N}## for all ##r##, so we have ##\mathbb{N}_r\subset\mathbb{N}##. So it must also be that ##|\mathbb{N}|\geq 𝔠##.

(Is this still okay?)

There can be no bijections from ##\mathbb{N}## to ##\mathbb{R}##. This means ##|\mathbb{N}|\neq 𝔠##. So we have ##|\mathbb{N}|> 𝔠##.

I am stumped trying to derive a contradiction. @fresh_42 could you please drop a little hint?
 
Last edited:
docnet said:
##f## is surjective, so it is well-defined.
These are two unrelated properties. A function is well-defined if it doesn't map one element on two targets. A function is surjective if every possible target is actually hit at least once. You can only construct an implicit dependency. By saying a function is surjective, it is already assumed that it is a function, i.e. especially well-defined. If you meant this, then you are right. But it would be better to state that ##f## is well-defined by assumption, rather than by surjectivity.

docnet said:
So ##f(n)\neq f(m)\Longrightarrow n\neq m##. This leads to ##f^{-1}(f(m))\neq f^{-1}(f(n))## whenever ##m\neq n##. So the ##f^{-1}(r)## are disjoint in ##\mathbb{N}## for all ##r##. ##N_r\in f^{-1}(r)##. Hence the ##N_r## are disjoint for all ##r##. Hence ##r\longmapsto N_r## is injective.

(Is this okay?)
Think so.
docnet said:
This means the image of ##r\longmapsto N_r## (we could call the set ##\mathbb{N}_r## for brevity) has a cardinality equal to ##|\mathbb{R}|=𝔠 ##. ##N_r\in \mathbb{N}## for all ##r##, so we have ##\mathbb{N}_r\subset\mathbb{N}##. So it must also be that ##|\mathbb{N}|\geq 𝔠##.

(Is this still okay?)
Yes. You could also simply observe that ##f(\varphi (r))=r## where ##\varphi (r)=N_r## is the function we get from ##f^{-1}## by picking the least number. Now ##\mathbb{R}\stackrel{\varphi }{\longrightarrow }\mathbb{N}_r\stackrel{f}{\longrightarrow }\mathbb{R}## is the identity map, and since ##f## is surjective, we have ##\mathbb{R}=\mathbb{N}_r## and there is no such bijection.
docnet said:
There can be no bijections from ##\mathbb{N}## to ##\mathbb{R}##. This means ##|\mathbb{N}|\neq 𝔠##. So we have ##|\mathbb{N}|> 𝔠##.

I am stumped trying to derive a contradiction. @fresh_42 could you please drop a little hint?
Well, you could simply say that we already know that ##|\mathbb{N}|<|\mathbb{R}|## by Cantor's diagonal enumeration argument.
 
  • Informative
Likes   Reactions: docnet
I suggest it's better to really understand the strategy of the proof before you get into the complications of writing it down formally:

1) We know that there is no bijection from ##\mathbb N## to ##\mathbb R##.

2) We also know that there is no bijection from a subset of ##\mathbb N## to ##\mathbb R##.

3) Suppose ##f## is a surjection from ##\mathbb N## onto ##\mathbb R##.

3a) The idea is to use ##f## to construct a bijection from a subset of ##\mathbb N## to ##\mathbb R##, which proves that no such surjection exists.

3b) Every real number ##r## is in the range of ##f##. Hence, there exists a non-empty set of natural numbers ##S_r## than are all mapped to ##r##. Note that ##S_r## may be a single element, finite or infinite subset of ##\mathbb N##. Note that the ##S_r## are disjoint, as ##f## is a (well-defined) function.

3c) Each ##S_r## has a smallest element ##n_r##.

3d) The set ##S = \{n_r: r \in \mathbb R \}## is a subset of (or equal to) ##\mathbb N##.

3e) Technical point: ##S## cannot be finite(!)

3f) Define ##\tilde f : S \rightarrow \mathbb R##, by ##\tilde f(n_r) = r## (or, if you prefer, ## \tilde f(n) = f(n)##.

3g) ##\tilde f## is a bijection from ##S## to ##\mathbb R##. Which is the required contradiction.
 
  • Informative
Likes   Reactions: docnet

Similar threads

Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K