- #1

- 675

- 4

*F*(

*x,t*) where

*x*is a function of

*t*, we write the

*total derivative*as

[tex]\frac{dF}{dt}=\frac{\partial F}{\partial x}\frac{dx}{dt}+\frac{\partial F}{\partial t}[/tex]

Now what if we have two parameters,

*F*(

*x,s,t*) where

*x*is a function of both

*s*and

*t*. What do we call the following quantities and is there a conventional notation for them?

[tex]\frac{\partial F}{\partial x}\frac{dx}{ds}+\frac{\partial F}{\partial s}[/tex]

[tex]\frac{\partial F}{\partial x}\frac{dx}{dt}+\frac{\partial F}{\partial t}[/tex]