MHB Does Z[root(-3)] Qualify as a GCD Domain?

  • Thread starter Thread starter bw0young0math
  • Start date Start date
bw0young0math
Messages
27
Reaction score
0
Hello. Today I study domains but I have some problems. Please help me.

I learned Z[root(-3)] is not UFD.
Then Z[root(-3)] is a example about gcd-domain( there exist some elts a,b in domain D such that it does not exist gcd(a,b).)

Let a=2, b-1+root(-3) .
a and b are not associates and they just have common divisor 1 and -1.
So gcd(a,b) does not exist.

Hum... I don't know why associate, 1/-1 have some relations with not existing gcd. Please......
 
Physics news on Phys.org
bw0young0math said:
Hello. Today I study domains but I have some problems. Please help me.

I learned Z[root(-3)] is not UFD.
Then Z[root(-3)] is a example about gcd-domain( there exist some elts a,b in domain D such that it does not exist gcd(a,b).)

Let a=2, b=1+root(-3) . I have changed a "-" to an "=" here. I hope that is what was intended.
a and b are not associates and they just have common divisor 1 and -1.
So gcd(a,b) does not exist.

Hum... I don't know why associate, 1/-1 have some relations with not existing gcd. Please......
There is something wrong here. The only common divisors of a and b are 1 and -1, and that means that a and b do have a gcd, namely 1.

If you want two elements of Z[√(-3)] without a gcd, then I suggest x = 4 and y = -2+2√(-3). Then a and b are both factors of x and of y, because
x = 2*2 = (1+√(-3))(1-√(-3)) and
y = 2(-1+√(-3)) = (1+√(-3))(1+√(-3)).
If x and y had a gcd then it would have to be a multiple of ab = 2+2√(-3). But ab does not divide x or y.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top