Doesn't it suffice to pick the limit of the sequence?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit Sequence
Click For Summary

Discussion Overview

The discussion centers around the convergence of the sequence of averages of a sequence of real numbers, specifically whether the limit of the sequence of averages converges to the same limit as the original sequence. Participants explore the implications of using limits, limit superior, and limit inferior in their arguments.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes that if a sequence $(a_n)$ converges to $a$, then the average $\frac{a_1+a_2+\dots+a_n}{n}$ should also converge to $a$.
  • Another participant questions the correctness of the initial argument, stating that it does not prove the existence of the limit, only that the limit inferior and limit superior are bounded by $a - \epsilon$ and $a + \epsilon$ respectively.
  • There is a discussion about whether the limits of the supremum and infimum of the sequence imply the existence of the limit of the sequence itself.
  • Some participants clarify that strict inequalities should be replaced with non-strict inequalities when discussing bounds.
  • References are made to theorems regarding the existence of limits for bounded sequences, suggesting that both the limit superior and limit inferior must coincide for the limit to exist.

Areas of Agreement / Disagreement

Participants express differing views on the sufficiency of the arguments presented. While some agree on the need for further proof regarding the existence of the limit, others provide clarifications and affirmations of the theorems discussed. The discussion remains unresolved regarding the necessity of using limit superior in the proof.

Contextual Notes

Participants note that the arguments depend on the definitions of limit superior and limit inferior, and the discussion involves nuances regarding the treatment of inequalities in limits.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $(a_n)$ be a sequence of real numbers such that $a_n \to a$ for some $a \in \mathbb{R}$. I want to show that $\frac{a_1+a_2+\dots+a_n}{n} \to a$.

We have the following:

Let $\epsilon>0$.

Since $a_n \to a$, there is some positive integer $N$ such that if $n \geq N$, then $a-\epsilon<a_n<a+\epsilon$.

Let $b_n=\frac{a_1+a_2+\dots+a_n}{n}$, for $n \geq N$.

We have that $b_n=\frac{a_1+a_2+\dots+a_N}{n}+\frac{a_{N+1}+\dots+a_n}{n}$

and since

$\frac{(n-N)(a-\epsilon)}{n}<\frac{a_{N+1}+\dots+a_n}{n}<\frac{(n-N)(a+\epsilon)}{n}$

we have that

$\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<b_n<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$

where $C=a_1+a_2+\dots+a_N$.

Can we now just let $n \to +\infty$ ?

Then we would get that $\lim_{n \to +\infty} \left( \frac{C}{n}+ \left( 1-\frac{N}{n}\right)(a-\epsilon)\right)< \lim_{n \to +\infty}b_n < \lim_{n \to +\infty} \left( \frac{C}{n}+\left( 1-\frac{N}{n}\right) (a+\epsilon)\right) \Rightarrow a-\epsilon<\lim_{n \to +\infty} b_n< a+\epsilon \Rightarrow \lim_{n \to +\infty} b_n=a$.

Is this right? :confused:
Because I found the proof online and there they pick $\lim_{n \to +\infty} \sup{b_n}$ in order to get the desired result. But is this necessary? (Thinking)
 
Physics news on Phys.org
evinda said:
Can we now just let $n \to +\infty$ ?

Then we would get that $\lim_{n \to +\infty} \left( \frac{C}{n}+ \left( 1-\frac{N}{n}\right)(a-\epsilon)\right)< \lim_{n \to +\infty}b_n < \lim_{n \to +\infty} \left( \frac{C}{n}+\left( 1-\frac{N}{n}\right) (a+\epsilon)\right) \Rightarrow a-\epsilon<\lim_{n \to +\infty} b_n< a+\epsilon \Rightarrow \lim_{n \to +\infty} b_n=a$.

Is this right? :confused:
Because I found the proof online and there they pick $\lim_{n \to +\infty} \sup{b_n}$ in order to get the desired result. But is this necessary? (Thinking)

No, I don't think this is entirely correct, unfortunately. Namely, at this point you have not proven that the limit exists. It looks like you have only shown that
$$
a - \epsilon \le \liminf_{n \to \infty}{b_n}, \limsup_{n \to \infty}{b_n} \le a + \epsilon,
$$
for the fixed $\epsilon > 0$ that you started with. This is not sufficient to establish the limit itself, but you are very close! (Namely, $\epsilon > 0$ can be chosen arbitrarily small, and what do you know about the limit of a sequence when its $\liminf$ and $\limsup$ coincide?)

(Also, note that if you take limits, strict inequalities become non-strict inequalities.)
 
Janssens said:
No, I don't think this is entirely correct, unfortunately. Namely, at this point you have not proven that the limit exists. It looks like you have only shown that
$$
a - \epsilon \le \liminf_{n \to \infty}{b_n}, \limsup_{n \to \infty}{b_n} \le a + \epsilon,
$$
for the fixed $\epsilon > 0$ that you started with. This is not sufficient to establish the limit itself, but you are very close! (Namely, $\epsilon > 0$ can be chosen arbitrarily small, and what do you know about the limit of a sequence when its $\liminf$ and $\limsup$ coincide?)

(Also, note that if you take limits, strict inequalities become non-strict inequalities.)

So we have that $\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<b_n<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$ for each $n \geq N$. So it also holds for $\sup{b_n}$. So, $\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<\sup{b_n}<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$. Right?

Do we know that the limit $\lim_{n \to +\infty} \sup{b_n}$ exists? :confused:

Do the equalities $\lim_{n \to +\infty} \sup{b_n}=a$ and $\lim_{n \to +\infty} \inf{b_n}=a$ imply that $\lim_{n \to +\infty} b_n$ exists and is equal to $a$ ? (Thinking)
 
evinda said:
So we have that $\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<b_n<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$ for each $n \geq N$. So it also holds for $\sup{b_n}$. So, $\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<\sup{b_n}<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$. Right?

Yes, provided that in the second equation, you replace the strict inequalities $<$ with non-strict inequalities $\le$.

evinda said:
Do we know that the limit $\lim_{n \to +\infty} \sup{b_n}$ exists? :confused:

Recall that by definition
$$
\limsup_{n \to \infty}{b_n} := \lim_{n \to \infty}{\sup_{k \ge n}{b_k}}, \qquad \liminf_{n \to \infty}{b_n} := \lim_{n \to \infty}{\inf_{k \ge n}{b_k}}.
$$
So you are really taking the limits as $n \to \infty$ of the decreasing sequence $(\sup_{k \ge n}{b_k})_n$ and the increasing sequence $(\inf_{k \ge n}{b_k})_n$. Since both sequences are also bounded, these limits exist. (This is a theorem.)

evinda said:
Do the equalities $\lim_{n \to +\infty} \sup{b_n}=a$ and $\lim_{n \to +\infty} \inf{b_n}=a$ imply that $\lim_{n \to +\infty} b_n$ exists and is equal to $a$ ? (Thinking)

Yes. This is another theorem. You may want to look up these two theorems and their proofs in your analysis notes. (You will be able to follow the proofs.) They are used often.
 
Janssens said:
Yes, provided that in the second equation, you replace the strict inequalities $<$ with non-strict inequalities $\le$.
Recall that by definition
$$
\limsup_{n \to \infty}{b_n} := \lim_{n \to \infty}{\sup_{k \ge n}{b_k}}, \qquad \liminf_{n \to \infty}{b_n} := \lim_{n \to \infty}{\inf_{k \ge n}{b_k}}.
$$
So you are really taking the limits as $n \to \infty$ of the decreasing sequence $(\sup_{k \ge n}{b_k})_n$ and the increasing sequence $(\inf_{k \ge n}{b_k})_n$. Since both sequences are also bounded, these limits exist. (This is a theorem.)
Yes. This is another theorem. You may want to look up these two theorems and their proofs in your analysis notes. (You will be able to follow the proofs.) They are used often.

Nice... Thank you... (Smirk)
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K