Undergrad Doing proofs with the variety function and the Zariski topology

Click For Summary
The discussion revolves around proving the equivalency of a problem related to the variety function and Zariski topology. The user expresses difficulty in demonstrating that the intersection of varieties equals the variety of the union of ideals. They understand that if a point is in the intersection of varieties, it must satisfy all polynomials in each ideal, but struggle with the converse. The conversation emphasizes the need for rigorous logical notation and set theory concepts to establish this equivalency. Clarification on the notation used is also suggested to aid understanding.
Mikaelochi
Messages
40
Reaction score
1
TL;DR
Problem is shown in the image
20211020_134055.jpg

I included this image because it is easier than typing it out. Anyway, this is an old problem I need to catch up on. I have a clue as to how to do part a. I could say given an x that is a member of ∩V(Ai) which implies that x is a member of V(Ai) for ∀i. Then we can say ∀i all polynomials are in Ai when the polynomial is equal to zero at x. Apparently this statement is the same as V of the union of Ai. Still a little hazy on that. I don't know how to show the converse is true (which would prove the equivalency). This problem has me quite lost. But I suspect (b), (c), and (d) follow nicely from understanding (a). Any help is greatly appreciated. Thanks!
 
Physics news on Phys.org
##V(A)## means the common zeroes of all polynomials in ##A##. The right hand side is the common zeroes of all polynomials in all ##A_i##. The left hand side says the same.
 
martinbn said:
##V(A)## means the common zeroes of all polynomials in ##A##. The right hand side is the common zeroes of all polynomials in all ##A_i##. The left hand side says the same.
I know that, I'm just having some trouble showing the equivalency of problem (a)
 
Mikaelochi said:
I know that, I'm just having some trouble showing the equivalency of problem (a)
But that is the showing of the equivalency!
 
martinbn said:
But that is the showing of the equivalency!
I mean I have to use logic notation and probably some ideas from set theory to rigorously prove this is the case
 
Mikaelochi said:
I mean I have to use logic notation and probably some ideas from set theory to rigorously prove this is the case
What I wrote was rigorous, the notations and the phrasing are unimportant. If you insist just write it with the notations you prefer. Let ##p\in V(\cup A_i)##, then for all ##i## and all ##f\in A_i##, we have that ##f(p)=0##. Thus ##p\in V(A_i)## for all ##i##.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 5 ·
Replies
5
Views
933
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
10
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K