Domain of y = x\sqrt{1-x^2}: -1 ≤ x ≤ 1

  • Context: MHB 
  • Thread starter Thread starter shamieh
  • Start date Start date
  • Tags Tags
    Domain State
Click For Summary

Discussion Overview

The discussion revolves around determining the domain of the function $$y = x\sqrt{1 - x^2}$$. Participants explore the conditions under which the expression is defined, focusing on the mathematical reasoning behind the domain, including inequalities and critical points.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • Some participants state that the domain can be derived from the inequality $$1 - x^2 \geq 0$$, leading to the conclusion that $$x^2 \leq 1$$.
  • Others suggest that the domain can be expressed as $$[-1, 1]$$ or using set notation as $$\{x | -1 \leq x \leq 1\}$$.
  • A participant proposes a method of testing values from different intervals around the critical points $$x = -1$$ and $$x = 1$$ to determine where the function is defined.
  • There is a clarification that stating the domain as just $$\{-1, 1\}$$ is incorrect, as it does not account for the values in between.
  • Some participants mention that the absolute value notation $$|x| \leq 1$$ is equivalent to the condition derived from the inequality.

Areas of Agreement / Disagreement

Participants generally agree on the domain being related to the interval $$[-1, 1]$$, but there is some contention regarding the correct notation and the interpretation of the domain, with multiple views presented on how to express it.

Contextual Notes

Some participants note that the discussion involves assumptions about the nature of the function and the interpretation of critical points, which may not be fully resolved.

shamieh
Messages
538
Reaction score
0
state the domain

$$y = x\sqrt{1 - x^2}$$

so

$$1 - x^2 >= 0$$
$$-x^2 >= -1$$
$$x^2 <= 1$$

$$d = {x <= (+)(-) 1}$$ or should I say $$d = {-1, 1}$$

which one is correct?
 
Physics news on Phys.org
I have moved this topic here to our Pre-Calculus subforum as questions on function domains does not involve the calculus. I suspect that this question is part of a calculus question though, or may even come from a calculus textbook, but when choosing the subforum in which to post, the nature of the question itself, rather than from where it originates should be considered firstly.

You are correct in stating:

$$1-x^2\ge0$$

What I would suggest doing next is factoring the left side:

$$(1+x)(1-x)\ge0$$

Now, determine the critical values, plot them on a number line and test the 3 resulting intervals.

A quicker method would be to plot the expression (the original radicand), and observe where it is non-negative.

What do you find?
 
Hello, shamieh!

State the domain: .y \:=\: x\sqrt{1 - x^2}

So: .1 - x^2 \:\ge\:0
. . . . . -x^2 \:\ge\:-1
. . . . . . .x^2\:\le\:1
\begin{array}{cc}\text{I would write:} &amp; |x| \:\le\:1 \\ &amp; \text{or} \\ &amp; \text{-}1 \:\le\:x\:\le\:1 \\ &amp; \text{or} \\ &amp; [\text{-}1,\,1]\end{array}
 
shamieh said:
state the domain

$$y = x\sqrt{1 - x^2}$$

so

$$1 - x^2 >= 0$$
$$-x^2 >= -1$$
$$x^2 <= 1$$

$$d = {x <= (+)(-) 1}$$ or should I say $$d = {-1, 1}$$

which one is correct?
NOT [math]\{-1, 1\}[/math] because that means the numbers -1 and 1 only, not the numbers between. You could say [math]\{x| -1\le x\le 1\}[/math] or [-1, 1] as MarkFL said.

("math" uses the "{" and "}" and as separators itself. To get "{" or "}" in the actual message, use "\{" and "\}".)
 
A naive approach:

We know that there's "something special" about the points $x = -1, x = 1$. So let's do this:

We'll split the real number line into 5 parts:

Part 1: all numbers less than -1
Part 2: -1
Part 3: all numbers between -1 and 1
Part 4: 1
Part 5: all numbers greater than 1.

Now let's pick numbers in each part, to see what happens:

The 5 real numbers I will use are:

Part 1: -4
Part 2: -1 (no choice, here)
Part 3: 1/2
Part 4: 1 (again, no other choice)
Part 5: 6

Now we will look at $f(x_0)$ for $x_0$ being each one of these 5 numbers:

$f(-4) = 4\sqrt{1 - (-4)^2} = 4\sqrt{-15} = \text{bad}$ (undefined)
$f(-1) = (-1)\sqrt{1 - (-1)^2} = (-1)\sqrt{1 - 1} = (-1)\sqrt{0} = (-1)(0) = 0$ (OK!)
$f(\frac{1}{2}) = \frac{1}{2}\sqrt{1 - (\frac{1}{2})^2} = \frac{1}{2}\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{4}$ (OK!)
$f(1) = (1)\sqrt{1 - 1^2} = (1)(0) = 0$ (OK again!)
$f(6) = 6\sqrt{1 - 6^2} = 6\sqrt{-35} = ?$ (not so good).

So it looks as if what we want is parts 2,3, and 4, and NOT parts 1 and 5. This is:

$\{-1\} \cup (-1,1) \cup \{1\} = [-1,1]$

If you prefer, you can write this as:

$\text{dom}(f) = \{x \in \Bbb R: |x| \leq 1\}$

the absolute value of $x$, written $|x|$ is just another way of saying:

$\sqrt{x^2}$, if one understand square roots as always being non-negative. So if:

$x^2 \leq 1$, then

$\sqrt{x^2} \leq \sqrt{1} = 1$

so:

$|x| \leq 1$.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K