ai93
- 54
- 0
Can anyone double check my answers? I have to put the answer in this format $$a+b\sqrt{c}$$
a)$$(3-\sqrt{18})^{2}$$
Answer
$$(3-\sqrt{18}) \quad(3-\sqrt{18})$$
$$9-3\sqrt{18}-3\sqrt{18}+18$$
$$9-6\sqrt{18}+18$$
$$27(-6)\quad(3\sqrt{2)}$$
=$$27-18\sqrt{2}$$
$$\therefore a = 27 b = -18 c = \sqrt{2}$$
Wouldn't I have to put it in $$+b?$$ I got -18
b) $$\frac{3}{4-\sqrt{7}}$$
Answer
$$\frac{3}{4-\sqrt{7}}$$ x $$\frac{4+\sqrt{7}}{4+\sqrt{7}}$$
$$\frac{3(4+\sqrt{7)}}{(4-\sqrt{7)(4+\sqrt{7)}}}$$
$$\frac{12+3\sqrt{7}}{16+4\sqrt{7}-4\sqrt{7}-7}$$
So
$$\frac{12+3\sqrt{7}}{9}$$ CF is 3 so divide by 3
=$$\frac{4}{3}+1\sqrt{7}$$
$$a=\frac{4}{3} b=1 c=\sqrt{2}$$
c) $$\frac{4+\sqrt{5}}{3-\sqrt{5}}$$
Answer
$$\frac{4+\sqrt{5}}{3-\sqrt{5}}$$ x $$\frac{3+\sqrt{5}}{3+\sqrt{5}}$$
$$\frac{(4+\sqrt{5)(3+\sqrt{5)}}}{(3-\sqrt{5)(3+\sqrt{5)}}}$$
$$\frac{12+4\sqrt{5}+3\sqrt{5}+5}{9+3\sqrt{5-3\sqrt{5}-5}}$$
=$$\frac{17}{4}+7\sqrt{5}$$
$$a=\frac{17}{4} b= 7 c=\sqrt{5}$$
Please correct me if i am wrong, and some of the questions I cannot display how I want, I hope you understand
a)$$(3-\sqrt{18})^{2}$$
Answer
$$(3-\sqrt{18}) \quad(3-\sqrt{18})$$
$$9-3\sqrt{18}-3\sqrt{18}+18$$
$$9-6\sqrt{18}+18$$
$$27(-6)\quad(3\sqrt{2)}$$
=$$27-18\sqrt{2}$$
$$\therefore a = 27 b = -18 c = \sqrt{2}$$
Wouldn't I have to put it in $$+b?$$ I got -18
b) $$\frac{3}{4-\sqrt{7}}$$
Answer
$$\frac{3}{4-\sqrt{7}}$$ x $$\frac{4+\sqrt{7}}{4+\sqrt{7}}$$
$$\frac{3(4+\sqrt{7)}}{(4-\sqrt{7)(4+\sqrt{7)}}}$$
$$\frac{12+3\sqrt{7}}{16+4\sqrt{7}-4\sqrt{7}-7}$$
So
$$\frac{12+3\sqrt{7}}{9}$$ CF is 3 so divide by 3
=$$\frac{4}{3}+1\sqrt{7}$$
$$a=\frac{4}{3} b=1 c=\sqrt{2}$$
c) $$\frac{4+\sqrt{5}}{3-\sqrt{5}}$$
Answer
$$\frac{4+\sqrt{5}}{3-\sqrt{5}}$$ x $$\frac{3+\sqrt{5}}{3+\sqrt{5}}$$
$$\frac{(4+\sqrt{5)(3+\sqrt{5)}}}{(3-\sqrt{5)(3+\sqrt{5)}}}$$
$$\frac{12+4\sqrt{5}+3\sqrt{5}+5}{9+3\sqrt{5-3\sqrt{5}-5}}$$
=$$\frac{17}{4}+7\sqrt{5}$$
$$a=\frac{17}{4} b= 7 c=\sqrt{5}$$
Please correct me if i am wrong, and some of the questions I cannot display how I want, I hope you understand
Last edited: