- #1
- 128
- 0
Homework Statement
THIS IS THE QUESTION
V (x) = [itex]\sqrt{((h-bar ^{2})V_{0})/2m}[/itex] [[itex]\delta(x-a)[/itex]+ [itex]\delta(x+a)[/itex]]
-How do I find R and T?
-Under what condition is there resonant transmission?
2. The attempt at a solution
ok. I got these answers. Are these correct? Someone please tell me.
General Equations
[itex]U_{I}[/itex] = [itex]e^{ikx}[/itex] + R [itex]e^{-ikx}[/itex]
[itex]U_{II}[/itex] = A [itex]e^{ikx}[/itex] + B [itex]e^{-ikx}[/itex]
[itex]U_{III}[/itex] =T [itex]e^{-ikx}[/itex]
Boundary Conditions
if a = 0
[itex]U_{I}[/itex] = [itex]U_{II}[/itex]
1 + R = A + B
[itex]U_{II}[/itex] = [itex]U_{III}[/itex]
A + B = T
discontinuity equation
[itex]U'_{I}[/itex] - [itex]U'_{II}[/itex] = - [itex]\sqrt{\frac{2m V_{o}}{h-bar^{2}}}[/itex] [itex]U_{a}[/itex]
ik (1 - R) - ik (A - B) = - [itex]\sqrt{\frac{2m V_{o}}{h-bar^{2}}}[/itex] R
[itex]U'_{II}[/itex] - [itex]U'_{III}[/itex] = - [itex]\sqrt{\frac{2m V_{o}}{h-bar^{2}}}[/itex][itex]U_{a}[/itex]
ik (A-B) - ikT = - [itex]\sqrt{\frac{2m V_{o}}{h-bar^{2}}}[/itex] T
/// i hope someone can tell me if these are correct so I can continue my calculations. Thanks.