I Doubt on Morse potential and harmonic oscillator

Click For Summary
The discussion centers on the confusion surrounding the application of Morse potential and harmonic oscillators in quantum mechanics, particularly regarding the vibrational ground state of diatomic molecules. The original poster questions whether the potential energy at maximum amplitude in the ground state equals the total energy of the system, which is characterized by the Hamiltonian. Respondents clarify that mixing classical and quantum mechanics can lead to misunderstandings, as kinetic and potential energies do not operate the same way in quantum systems. They emphasize the importance of focusing on wavefunctions in quantum mechanics rather than classical interpretations. The conversation highlights the complexities of energy states in quantum harmonic oscillators, particularly distinguishing between ground states and coherent states.
Salmone
Messages
101
Reaction score
13
I have a little doubt about Morse potential used for vibration levels of diatomic molecules. With regard to the image below, if the diatomic molecule is in the vibrational ground state, when the oscillation reaches the maximum amplitude for that state the velocity of the molecule must be zero so that the kinetic energy will be zero and the Hamiltonian will be equal to the potential energy for that particular state. Now, since in quantum harmonic oscillator the eigenvalues of the Hamiltonian are equal to ##E=\hbar\omega(n+\frac{1}{2})##, for the ground state we have ##E=\frac{\hbar\omega}{2}##, so the total energy (kinetic + potential) must be always equal to that value in the G.S., for what I've wrote before then must be that the potential energy corresponding to the orizontal line of the vibrational ground state that is, the potential energy when the maximum amplitude is reached, is equal to ##E=\frac{\hbar\omega}{2}##, is it right?
649px-Morse-potential.png
 
Physics news on Phys.org
Can you write a shorter question? I have some difficulties understanding what you are really wondering about
 
I think one issue here is that the OP is mixing quantum and classical mechanics.

Salmone, I agree with the first half of your post as a description of the underlying classical mechanics of a simple harmonic oscillator (I'll ignore the Morse potential, as I think it is irrelevant to the question). However, when you move to quantum mechanics, which you do when you start your discussion of the ground state energy, you have to switch to studying wavefunctions. The danger of combining quantum and classical observations as you have done is that discussion of the kinetic energy and potential energy fails to work in quantum mechanics. In the quantum mechanics of a SHO, the kinetic energy and potential energy do not commute and care has to be taken when you discuss them separately. There are classical-looking states called coherent states, but they are not the ground state, instead they are constructed from a particular sum of all the energy eigenstates.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 4 ·
Replies
4
Views
982
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K