Draw Sketch: Right Triangle Area = Half Parallelogram Area (Party)

Click For Summary
SUMMARY

The discussion centers on the geometric relationship between right triangles and parallelograms, specifically how the area of two identical right triangles can equal half the area of a parallelogram. Participants clarify that for this relationship to hold, the two verticals must be unified into a single vertical line from vertex D to vertex B, eliminating any middle section. The sketches provided illustrate various configurations of the triangles and parallelogram, confirming that the area of the two right triangles is indeed half that of the parallelogram when correctly aligned.

PREREQUISITES
  • Understanding of basic geometric shapes, specifically triangles and parallelograms.
  • Familiarity with area calculations for triangles and parallelograms.
  • Knowledge of coordinate geometry for visualizing shapes in a plane.
  • Experience with geometric sketching tools, such as TikZ.
NEXT STEPS
  • Explore the properties of parallelograms and their diagonals in geometry.
  • Learn about the area formulas for triangles and parallelograms.
  • Investigate the use of TikZ for creating geometric illustrations in LaTeX.
  • Study the implications of geometric transformations on area relationships.
USEFUL FOR

Students of geometry, educators teaching geometric concepts, and anyone interested in visualizing mathematical relationships through sketches and diagrams.

mathlearn
Messages
331
Reaction score
0
View attachment 6172

Any thoughts on the sketch? (Party)

Many Thanks :)
 

Attachments

  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    25 KB · Views: 153
Last edited by a moderator:
Mathematics news on Phys.org
I presume that the "right triangle" referred to is the one at the right of the parallelogram. It should be clear to you that the right triangle at the left is identical to the first one and has the same area. So in order that the area of either of those two right triangles be "exactly half" the area of the parallelogram, there must be nothing but those two right triangles. That is, there is no "middle section"- the "two" verticals must be one- that vertical goes from vertex D to vertex B. What does that look like?
 
HallsofIvy said:
I presume that the "right triangle" referred to is the one at the right of the parallelogram. It should be clear to you that the right triangle at the left is identical to the first one and has the same area. So in order that the area of either of those two right triangles be "exactly half" the area of the parallelogram, there must be nothing but those two right triangles. That is, there is no "middle section"- the "two" verticals must be one- that vertical goes from vertex D to vertex B. What does that look like?

(Wave) Hello HallsofIvy,

This should be that identical right angled triangle at the left

View attachment 6176

Then the triangle which has half the area of the parallelogram would be,

View attachment 6177

Correct ? (Happy)

Many THanks (Party)
 

Attachments

  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    13.1 KB · Views: 124
  • New Document 59-Page 1.jpg
    New Document 59-Page 1.jpg
    13.4 KB · Views: 140
mathlearn said:
This should be that identical right angled triangle at the left

Then the triangle which has half the area of the parallelogram would be,

Correct ? (Happy)

Hey mathlearn! (Smile)

I think the right triangle is fixed.
We have something like this:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{6};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=3mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

And if we make $x$ smaller, we get:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{5};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Hmm... let's make $x$ negative:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{-2};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

I think we need $x=0$:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]
%preamble \usetikzlibrary{arrows}

\def\x{0};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 - 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above,xshift=3mm] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Now the right triangle takes up half of the parallellogram. (Happy)​
 
Last edited:
mathlearn said:
(Wave) Hello HallsofIvy,

This should be that identical right angled triangle at the left
Then the triangle which has half the area of the parallelogram would be,
Correct ? (Happy)

Many THanks (Party)
No, those are not right triangles. And it is always true that the two triangles you get by drawing a diagonal have area half the parallelogram.

- -

- - - Updated - - -

I like Serena said:
Hey mathlearn! (Smile)

I think the right triangle is fixed.
We have something like this:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{6};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=3mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

And if we make $x$ smaller, we get:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{5};

\draw[ultra thick, blue]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Hmm... let's make $x$ negative:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{-2};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 + 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

I think we need $x=0$:
\begin{tikzpicture}[shorten >=1pt, shorten <=1pt, font=\large]

\def\x{0};

\draw[ultra thick, red]
(0,0) coordinate (A)
-- ({2*\x - 4},0) coordinate (B)
-- ({2*\x - 4 + \x - 4},{abs(\x - 4)}) coordinate (C)
-- ({\x - 4},{abs(\x - 4)}) coordinate (D)
-- cycle;

\node
at (A) {A};
\node
at (B) {B};
\node
at (C) {C};
\node
at (D) {D};

\draw[dashed] ({2*\x - 4},0) -- ({2*\x - 4},{abs(\x - 4)}) coordinate (E);
\node[above,yshift=6mm] at (E) {E};

\draw ({2*\x - 4},{abs(\x - 4)}) rectangle ({2*\x - 4 - 0.2},{abs(\x - 4) - 0.2});

\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 + 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 + 0.05});
\draw ({2*\x - 4 - 0.2},{abs(\x - 4)/2 - 0.05}) -- ({2*\x - 4 + 0.2},{abs(\x - 4)/2 - 0.05});
\draw ({\x*5/2 - 6 - 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 - 0.05},{abs(\x - 4) - 0.2});
\draw ({\x*5/2 - 6 + 0.05},{abs(\x - 4) + 0.2}) -- ({\x*5/2 - 6 + 0.05},{abs(\x - 4) - 0.2});

\draw[triangle 45-triangle 45] ({\x - 4},{abs(\x - 4) + 0.25}) -- node[above,xshift=3mm] {$x$} (({2*\x - 4},{abs(\x - 4) + 0.25});
\draw[triangle 45-triangle 45] (({2*\x - 4},{abs(\x - 4) + 0.25}) -- node[above] {$x-4$} ({2*\x - 4 + \x - 4},{abs(\x - 4) + 0.25});

\end{tikzpicture}

Now the right triangle takes up half of the parallellogram. (Happy)​

Yes, that was what I meant. Nice drawings!​
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K