Dynamics and convergence of a general flow network

  • Context: Graduate 
  • Thread starter Thread starter SteveMaryland
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the dynamics and convergence of flow networks, which may include systems of resistors or water pipes arranged in various configurations. Participants explore the behavior of these networks under applied energy gradients and the nature of flux allocation among branches, questioning how these systems reach a steady-state flow and the underlying principles governing this behavior.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants propose that upon the application of an energy gradient, flow networks will converge to a specific set of flux allocations, potentially maximizing total flux.
  • Others argue that certain configurations, like balanced bridge networks, may exhibit branches with zero flux, challenging the initial hypothesis.
  • There is a discussion about the mechanisms by which flow systems converge to a solution, with some suggesting that non-linear networks complicate this process.
  • Participants mention that while mathematical methods exist to analyze flow networks, real systems operate without knowledge of these methods, raising questions about the deeper laws of thermodynamics at play.
  • One participant introduces the idea of Maxwell's Demon as a metaphor for how systems might optimize flow, questioning whether the optimization is related to minimizing energy or maximizing entropy.
  • Concerns are raised about the computability of solutions in complex networks due to the vast number of degrees of freedom and interactions.
  • Another participant notes that real-world networks can behave unpredictably, citing examples where networks have failed to operate correctly.
  • It is suggested that each segment of a network has an impedance to flux, and the dynamics of flux are influenced by the potential differences across segments.
  • Some participants express that while linear networks may converge to steady-state solutions, non-linear elements can lead to chaotic behavior in the system.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the behavior of flow networks, with multiple competing views regarding the nature of flux convergence, the role of non-linear dynamics, and the implications of real-world behavior versus mathematical models.

Contextual Notes

The discussion highlights limitations in understanding the convergence processes in non-linear networks and the assumptions underlying the behavior of real material systems compared to theoretical models.

SteveMaryland
Messages
16
Reaction score
2
Sorry if this is the wrong place to post, but my inquiry spans so many STEM disciplines I figured I would post it here. Also, I have really looked for papers which address this issue and hope someone on PF can advise.

Given a flow network, which could be any connected set of N resistors, or water pipes, etc. of any finite ohmage, diameter etc. and connected in any sort of parallel, series, delta-wye combinations. Under an applied energy gradient (voltage, gravity etc.), a flow will occur through this network, and each branch of the network will exhibit a non-zero flux.

Hypothesis: Upon gradient application, this network + fluid system will spontaneously converge to a specific set of flux allocations for each branch, and the sum of all branch fluxes will be a maximum possible for the given system metrics. True?

Why would the flux converge to a "max" flux? And, by what means (selection, trial/error, filtering, sortation) do flow systems in general converge to a "solution"? The convergence (to steady-state flow) cannot be instantaneous, but what does actually go on in the process? (by what physics does Nature solve such an N X N matrix "automatically"?)

(The above system is in steady-state flow, but is not in equilibrium.)

Thanks for your wisdom. And, for my further reading, please advise what branch of physics would study this general phenomenon!
 
Last edited:
Physics news on Phys.org
SteveMaryland said:
Under an applied energy gradient (voltage, gravity etc.), a flow will occur through this network, and each branch of the network will exhibit a non-zero flux.
There are some branches that may have zero flux, for example, a balanced bridge network.
 
  • Like
Likes   Reactions: Klystron, DaveE and BillTre
SteveMaryland said:
and each branch of the network will exhibit a non-zero flux.
Not always. for example, a balanced bridge network:

PXL_20240202_205148957~2.jpg


SteveMaryland said:
by what means (selection, trial/error, filtering, sortation) do flow systems in general converge to a "solution"?
A nearly impossible question to answer, in general (non-linear networks, for example). Linear networks will have solution(s) as in a set of linear algebra equations.
 
  • Like
Likes   Reactions: BillTre
SteveMaryland said:
what branch of physics would study this general phenomenon?
For linear networks, it's mostly Linear Algebra and EE.
For non-linear networks look for Control Systems and Non-linear Dynamics.
But honestly, it's really mostly Math.

Steve Strogatz at MIT has some stuff you'll probably like. Some very accessible, some free online MIT courses. His pop-science book "Sync" is quite good, I think.
 
I understand that Man has math methods to calculate flow networks, but real material systems don't know any math yet they get the right answer anyway! How? What deeper laws of thermo-physics governs this behavior? It is like a Maxwells Demon is operating here... tuning each and every branch flow simultaneously (?) such that the total flow is maximized. And what is optimized here? Min energy? Max entropy? See https://en.wikipedia.org/wiki/Principle_of_minimum_energy
 
Last edited:
SteveMaryland said:
I understand that Man has math methods to calculate flow networks, but real material systems don't know any math yet they get the right answer anyway! How? What deeper laws of thermo-physics governs this behavior? It is like a Maxwells Demon is operating here... tuning each and every branch flow simultaneously (?) such that the total flow is maximized. And what is optimized here? Min energy? Max entropy? See https://en.wikipedia.org/wiki/Principle_of_minimum_energy
Some very general questions just don't have simple answers. Networks could be as complicated as a human brain, or a collection of human brains interacting. In general, we just don't know (yet). I would have questions about the computability of generalized network solutions because of the huge number of degrees of freedom and their complex interactions.

SteveMaryland said:
real material systems don't know any math yet they get the right answer anyway!
This sounds like a post-hoc definition of "the right answer". There have been several examples of electrical distribution networks that did "the wrong thing" because of network stability issues. Epileptic seizures may also be a network doing "the wrong thing".
https://en.wikipedia.org/wiki/Northeast_blackout_of_1965
 
SteveMaryland said:
What deeper laws of thermo-physics governs this behavior?
Each network segment offers an impedance to flux.
Flux, is a rising function, of segment potential difference.
Power is dissipated in a segment, in proportion to flux and potential difference.

Segments exist in a network of other segments, each with an impedance to flux.
The flux, in one segment, passes through other segments.
The available potential difference is limited, and is shared by the segments.
Parallel segments share the flux, series segments share the potential.

An increase in segment flux, reduces the share of potential difference available from the network.
But segment flux was defined to rise with potential difference.
So, every segment in the network has a convergent, self-regulating flux.
Which leads to the concept of impedance matching and power transfer.


Mathematics is our symbolic analogue, of real world relationships.
The real world does not need mathematics, it is real.
 
  • Like
Likes   Reactions: BillTre
Intuition tells me network built from linear elements will converge on some steady state solution, but if the elements are nonlinear (and all real elements are nonlinear) system can be chaotic (producing some randomly pulsing flow).
 
  • Like
Likes   Reactions: BillTre and Bystander
  • #10
Thanks everyone for your contributions. My motivation for this enquiry:

[Personal Speculation has been removed from this reply]
 
Last edited by a moderator:
  • #11
Thread is paused for Moderation...
 
  • #12
After some cleanup of Personal Speculation, this thread will remain closed. Thanks to everybody for trying to help the OP.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
51K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K