MHB Echo62's question at Yahoo Answers (Improper integral)

Click For Summary
To evaluate the improper integral of dx/(x^(2/3)) from -3 to 3, it is crucial to recognize the discontinuity at x=0. The integral can be split into two parts: from -3 to 0 and from 0 to 3. The calculation shows that both integrals are equal, leading to a total value of 6√3 for the entire integral. Proper limits must be applied to handle the discontinuity at zero. The final result confirms that the integral converges to 6√3.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

How do I evaluate the integral dx/(x^(2/3)) from -3 to 3?

What I did was, so for the integrand f(x)=1/(x^(2/3)) it's only continuous from (0, infinity), it's discontinuous at x=0, so I set up the integral as the limit as b approaches 0 from the right of the same integrand, so my answer was 3*(3)^(1/3) but that's wrong. Please help me?

Here is a link to the question:

Improper integral help? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello echo62,

We have $$\begin{aligned}
\int_0^3\frac{dx}{x^{2/3}}&=\int_0^3x^{-2/3}dx\\&=\lim_{\epsilon \to 0^+}\int_{\epsilon}^3x^{-2/3}dx\\&=\lim_{\epsilon \to 0^+}\left[3x^{1/3}\right]_{\epsilon}^3\\&=3\lim_{\epsilon \to 0^+}(\sqrt [3]{3}-\sqrt [3]{\epsilon})\\&=3\sqrt [3]{3}\end{aligned}$$ On the other hand, using the transformation $x=-t$:
$$\begin{aligned}\int_{-3}^0\frac{dx}{x^{2/3}}&=\int_{3}^0\frac{-dt}{(-t)^{2/3}}\\&=\int_{0}^3\frac{dt}{t^{2/3}}\\&=\int_{0}^3\frac{dx}{x^{2/3}}
\end{aligned}$$ So, $$\int_{-3}^3\frac{dx}{x^{2/3}}=\int_{-3}^0\frac{dx}{x^{2/3}}+\int_0^3\frac{dx}{x^{2/3}}=2\int_0^3\frac{dx}{x^{2/3}}=\boxed{\;6\sqrt [3]{3}\;}$$
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K