MHB Edin's question via email about implicit differentiation

Click For Summary
The discussion focuses on using implicit differentiation to find the first and second derivatives of the curve defined by the equation y^3 + y + xy^2 = 10 + 4sin(x) at the point (0, 2). For part (a), the first derivative y' is calculated to be 0 at this point. In part (b), the second derivative y'' is also determined to be 0 at (0, 2). The calculations involve differentiating both sides of the equation and substituting the values accordingly. The application of implicit differentiation is confirmed as correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
A curve has equation $\displaystyle \begin{align*} y^3 + y + x\,y^2 = 10 + 4\sin{(x)} \end{align*}$.

(a) Determine y' at the point (0, 2)

(b) Determine y'' at the point (0,2)

(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
Correct! Implicit differentiation was applied well.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K