Edin's question via email about implicit differentiation

Click For Summary
SUMMARY

The discussion focuses on implicit differentiation of the curve defined by the equation \( y^3 + y + xy^2 = 10 + 4\sin(x) \). At the point (0, 2), the first derivative \( y' \) is calculated to be 0, and the second derivative \( y'' \) is also determined to be 0. The differentiation process involves applying the chain rule and product rule effectively to derive both \( y' \) and \( y'' \) from the original equation.

PREREQUISITES
  • Understanding of implicit differentiation
  • Familiarity with derivatives and their notation
  • Knowledge of trigonometric functions and their derivatives
  • Proficiency in applying the chain rule and product rule in calculus
NEXT STEPS
  • Study advanced techniques in implicit differentiation
  • Learn about higher-order derivatives and their applications
  • Explore applications of implicit differentiation in real-world problems
  • Review the properties of trigonometric functions and their derivatives
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators seeking to enhance their understanding of implicit differentiation techniques.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
A curve has equation $\displaystyle \begin{align*} y^3 + y + x\,y^2 = 10 + 4\sin{(x)} \end{align*}$.

(a) Determine y' at the point (0, 2)

(b) Determine y'' at the point (0,2)

(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
 
  • Like
Likes   Reactions: chwala
Physics news on Phys.org
Prove It said:
(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
Correct! Implicit differentiation was applied well.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K