MHB Edin's question via email about implicit differentiation

Click For Summary
The discussion focuses on using implicit differentiation to find the first and second derivatives of the curve defined by the equation y^3 + y + xy^2 = 10 + 4sin(x) at the point (0, 2). For part (a), the first derivative y' is calculated to be 0 at this point. In part (b), the second derivative y'' is also determined to be 0 at (0, 2). The calculations involve differentiating both sides of the equation and substituting the values accordingly. The application of implicit differentiation is confirmed as correct.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
A curve has equation $\displaystyle \begin{align*} y^3 + y + x\,y^2 = 10 + 4\sin{(x)} \end{align*}$.

(a) Determine y' at the point (0, 2)

(b) Determine y'' at the point (0,2)

(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
(a) Differentiate both sides of the equation with respect to x:

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ y^3 + y + x\,y^2 \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 10 + 4\sin{(x)} \right] \\ 3\,y^2\,\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + 2\,x\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= 4\cos{(x)} - y^2 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(x)} - y^2}{3\,y^2 + 1 + 2\,x\,y} \end{align*}$

so at (0, 2) we have

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{4\cos{(0)} - 2^2}{3 \cdot 2^2 + 1 + 2 \cdot 0 \cdot 2} \\ &= \frac{0}{13} \\ &= 0 \end{align*}$(b) Differentiate both sides of the resulting equation with respect to x again...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}y}{\mathrm{d}x} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ 4\cos{(x)} - y^2 \right] \\ \left( 3\,y^2 + 1 + 2\,x\,y \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} + 2\,y + 2\,x\,\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}y}{\mathrm{d}x} &= -4\sin{(x)} - 2\,y\,\frac{\mathrm{d}y}{\mathrm{d}x} \end{align*}$

so at (0, 2) where $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \end{align*}$ we have

$\displaystyle \begin{align*} \left( 3\cdot 2^2 + 1 + 2\cdot 0 \cdot 2 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + \left( 6 \cdot 2 \cdot 0 + 2\cdot 2 + 2 \cdot 0 \cdot 0 \right) \cdot 0 &= -4\sin{(0)} - 2\cdot 2 \cdot 0 \\ \left( 12 + 1 + 0 \right) \frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 0 &= 0 + 0 \\ 13\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 0 \end{align*}$
Correct! Implicit differentiation was applied well.
 

Similar threads