Effective mass in terms of electron states

Click For Summary
SUMMARY

The discussion focuses on the calculation of the effective mass matrix, defined as ##m^{\star}_{ij} = \hbar^2 (\partial^2 E/ \partial k_i \partial k_j)^{-1}##, using second-order perturbation theory. The participants analyze the perturbation Hamiltonian ##\delta H## and its implications for the effective mass, identifying key steps in equating perturbation expansions with Taylor expansions of energy states. The conversation highlights the necessity of addressing symmetry in off-diagonal terms and clarifies the role of crystal momentum eigenvalues ##p_i## in the calculations. Participants express confusion over specific terms and seek to identify errors in the derivation process.

PREREQUISITES
  • Understanding of quantum mechanics, particularly perturbation theory
  • Familiarity with solid-state physics concepts, including effective mass
  • Knowledge of Hamiltonian mechanics and energy state calculations
  • Proficiency in mathematical techniques involving Taylor expansions and matrix inversions
NEXT STEPS
  • Study the derivation of effective mass in solid-state physics using perturbation theory
  • Learn about the role of crystal momentum in quantum mechanics and its implications for electron states
  • Explore the mathematical foundations of Taylor expansions in quantum mechanical contexts
  • Investigate the properties of Hermitian operators and their relevance in perturbation theory
USEFUL FOR

Physicists, particularly those specializing in solid-state physics, quantum mechanics students, and researchers working on electron behavior in crystalline materials will benefit from this discussion.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
I'm trying to figure out the second order extension of the "trick" used on page 92 (https://www.damtp.cam.ac.uk/user/tong/aqm/solid3.pdf) for the calculation of the effective mass matrix ##m^{\star}_{ij} = \hbar^2 (\partial^2 E/ \partial k_i \partial k_j)^{-1}## on page 94. I think for this one would need to consider the following perturbation:\begin{align*}
\delta H &= \frac{\partial H_{\mathbf{k}}}{\partial \mathbf{k}} \cdot \mathbf{q} + \frac{1}{2}\frac{\partial^2 H_{\mathbf{k}}}{\partial k_i \partial k_j} q_i q_j \\
&= \frac{\hbar^2}{m}\mathbf{q} \cdot (-i\nabla + \mathbf{k}) + \frac{\hbar^2}{m} \delta_{ij} q_i q_j
\end{align*}Then I can equate the second order perturbation expansion to the Taylor expansion of the exact result ##E(\mathbf{k} + \mathbf{q})##,\begin{align*}
\frac{\partial E}{\partial \mathbf{k}} \cdot \mathbf{q} + \frac{1}{2}\frac{\partial^2 E}{\partial k_i \partial k_j} q_i q_j &= \langle \psi_{n,\mathbf{k}}| \delta H | \psi_{n,\mathbf{k}} \rangle + \sum_{n \neq n'} \frac{|\langle \psi_{n,\mathbf{k}} | \delta H | \psi_{n', \mathbf{k}} \rangle|^2}{E_{n}(\mathbf{k}) - E_{n'}(\mathbf{k})} \\
\frac{1}{2}\frac{\partial^2 E}{\partial k_i \partial k_j} q_i q_j &= \frac{\hbar^2}{m} \delta_{ij} q_i q_j + \frac{\hbar^2}{m^2} \sum_{n \neq n'} \frac{|\langle \psi_{n,\mathbf{k}} | \mathbf{q} \cdot -i \hbar \nabla | \psi_{n', \mathbf{k}} \rangle|^2}{E_{n}(\mathbf{k}) - E_{n'}(\mathbf{k})}
\end{align*}where I canceled the first order terms from both sides, and also dropped the fourth order terms in ##q_i## from the second term. Then\begin{align*}
\hbar^2 \left(\frac{\partial^2 E}{\partial k_i \partial k_j} \right)^{-1} &= \frac{m}{2}\left[ \delta_{ij} - \frac{1}{m} \sum_{n\neq n'} \frac{\langle \psi_{n,\mathbf{k}} | p_i | \psi_{n',\mathbf{k}} \rangle \langle \psi_{n',\mathbf{k}} |p_j | \psi_{n,\mathbf{k}} \rangle}{E_n(\mathbf{k}) - E_{n'}(\mathbf{k})} \right]
\end{align*}What's wrong?
 
Last edited:
Physics news on Phys.org
Just as a bewildered observer, what do you think is wrong with this result? Seems like a complicated second order perturbation matrix answer to a complicated problem. I assume once the perturbation sums are computed the off diagonal terms go away because of symmetry perhaps?
 
I'm trying to get to this result:

1648734934772.png
 
I see now, you made a mistake somewhere :rolleyes:. I’m still trying to see how ##p_i## comes about. Then all one needs is the missing factor of ##m^2## and the sign error…..
 
It's because ##\mathbf{q} \cdot -i\hbar \nabla = q_i p_i##. The expression in post #3 is also the inverse matrix and I don't know where the Hermitian conjugate (##\mathrm{h.c.}##) terms come from.
 
Okay, I see ##k## and ##q## In the development. What’s ##p##?
 
I have ##p_i## as the crystal momentum eigenvalues.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 27 ·
Replies
27
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K