Effie's question via email about a volume by revolution

Click For Summary
SUMMARY

The volume of the solid formed by rotating the region bounded by the functions \( y = 2x^2 \) and \( y = x + 1 \) around the line \( y = 3 \) is calculated using definite integrals. The points of intersection are found at \( x = 1 \) and \( x = -\frac{1}{2} \). The outer volume is given by the integral \( \int_{-\frac{1}{2}}^1 \pi(2x^2 - 3)^2 \, dx \) and the inner volume by \( \int_{-\frac{1}{2}}^1 \pi(x - 2)^2 \, dx \). The total volume is \( \frac{99\pi}{20} \) cubic units. Additionally, the volume when rotated around the line \( x = -1 \) is calculated to be \( \frac{105\pi}{16} \) cubic units.

PREREQUISITES
  • Understanding of definite integrals in calculus
  • Familiarity with the method of volumes of revolution
  • Knowledge of functions and their intersections
  • Ability to manipulate algebraic expressions and perform integration
NEXT STEPS
  • Study the method of cylindrical shells for volume calculations
  • Learn about the washer method for finding volumes of revolution
  • Explore applications of integration in physics, particularly in calculating volumes
  • Practice solving similar problems involving rotation of regions around different axes
USEFUL FOR

Students and educators in calculus, mathematicians interested in applications of integration, and professionals in fields requiring geometric volume calculations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
What is the volume of the solid formed by the region bounded between the functions $\displaystyle \begin{align*} y 2\,x^2 \end{align*}$ and $\displaystyle \begin{align*} y = x + 1 \end{align*}$ being rotated around the line $\displaystyle \begin{align*} y = 3 \end{align*}$?

To start with, we should find the points of intersection of the two functions, as these will be the terminals of our regions of integration.

$\displaystyle \begin{align*} 2\,x^2 &= x + 1 \\ 2\,x^2 - x - 1 &= 0 \\ 2\,x^2 - 2\,x + x - 1 &= 0 \\ 2\,x\,\left( x - 1 \right) + 1 \,\left( x - 1 \right) &= 0 \\ \left( x - 1 \right) \left( 2\,x + 1 \right) &= 0 \\ x - 1 &= 0 \textrm{ or } 2\,x + 1 = 0 \\ x &= 1 \textrm{ or } x = -\frac{1}{2} \end{align*}$

As we are rotating around the line $\displaystyle \begin{align*} y = 3 \end{align*}$, it would make sense to move everything down by 3 units. The areas and volumes will still be exactly the same, but we will be rotating around the x axis.

The furthest function from the x-axis will be $\displaystyle \begin{align*} y = 2\,x^2 - 3 \end{align*}$, so we should evaluate the volume formed by rotating the area between that function and the x-axis between $\displaystyle \begin{align*} x = -\frac{1}{2} \end{align*}$ and x = 1 around the x axis, and then subtract the volume formed by rotating the area between the function $\displaystyle \begin{align*} y = x - 2 \end{align*}$ and the x-axis between $\displaystyle \begin{align*} x = -\frac{1}{2} \end{align*}$ and x = 1 around the x axis.

To evaluate each volume, picture each region being broken up into a number of rectangles. Each rectangle will then be rotated around the x-axis to form a cylinder. The volume of a cylinder is $\displaystyle \begin{align*} \pi\,r^2\,h \end{align*}$. Each cylinder will have a radius that is the same as the y value, and a height that is equal to $\displaystyle \begin{align*} \Delta x \end{align*}$, a small change in x.

So the outer volume we can approximate by $\displaystyle \begin{align*} \sum{ \pi\,\left( 2\,x^2 - 3 \right) ^2 \,\Delta x } \end{align*}$, and if we increase the number of cylinders (making each cylinder thinner) we get a better approximation. As $\displaystyle \begin{align*} n \to \infty \end{align*}$ and $\displaystyle \begin{align*} \Delta x \to 0 \end{align*}$, the approximation becomes exact and the sum becomes an integral. So the outer volume is exactly $\displaystyle \begin{align*} \int_{-\frac{1}{2}}^1{ \pi\,\left( 2\,x^2 - 3 \right) ^2\,\mathrm{d}x } \end{align*}$. By identical arguments, the inner volume to be subtracted is exactly equal to $\displaystyle \begin{align*} \int_{-\frac{1}{2}}^1{ \pi\,\left( x - 2\right) ^2 \,\mathrm{d}x } \end{align*}$. Thus the total volume we want to evaluate is

$\displaystyle \begin{align*} v &= \int_{-\frac{1}{2}}^1{ \pi\,\left( 2\,x^2 - 3 \right) ^2\,\mathrm{d}x } - \int_{-\frac{1}{2}}^1{ \pi\,\left( x - 2 \right) ^2\,\mathrm{d}x } \\ &= \pi\int_{-\frac{1}{2}}^1{ \left[ \left( 2\,x^2 - 3 \right) ^2 - \left( x - 2 \right) ^2 \right] \,\mathrm{d}x } \\ &= \pi \int_{-\frac{1}{2}}^1{ \left[ 4\,x^4 - 12\,x^2 + 9 - \left( x^2 - 4\,x + 4 \right) \right] \,\mathrm{d}x } \\ &= \pi\int_{-\frac{1}{2}}^1{ \left( 4\,x^4 - 13\,x^2 + 4\,x + 5 \right) \,\mathrm{d}x } \\ &= \pi\,\left[ \frac{4\,x^5}{5} - \frac{13\,x^3}{3} + 2\,x^2 + 5\,x \right] _{-\frac{1}{2}}^1 \\ &= \pi\,\left\{ \left[ \frac{4\,\left( 1 \right) ^5}{5} - \frac{13\,\left( 1 \right) ^3}{3} + 2\,\left( 1 \right) ^2 + 5\,\left( 1 \right) \right] - \left[ \frac{4\,\left( -\frac{1}{2} \right) ^5}{5} - \frac{13\,\left( -\frac{1}{2} \right) ^3}{3} + 2\,\left( -\frac{1}{2} \right) ^2 + 5\,\left( -\frac{1}{2} \right) \right] \right\} \\ &= \pi \,\left\{ \left( \frac{4}{5} - \frac{13}{3} + 2 + 5 \right) - \left[ \frac{4\,\left( -\frac{1}{32} \right)}{5} - \frac{13\,\left( -\frac{1}{8} \right) }{3} + 2\,\left( \frac{1}{4} \right) - \frac{5}{2} \right] \right\} \\ &= \pi\,\left[ \left( \frac{12}{15} - \frac{65}{15} + \frac{105}{15} \right) - \left( -\frac{1}{40} + \frac{13}{24} + \frac{1}{2} - \frac{5}{2} \right) \right] \\ &= \pi\,\left[ \frac{52}{15} - \left( -\frac{3}{120} + \frac{65}{120} - \frac{240}{120} \right) \right] \\ &= \pi\,\left[ \frac{52}{15} - \left( -\frac{178}{120} \right) \right] \\ &= \pi\,\left( \frac{52}{15} + \frac{89}{60} \right) \\ &= \pi\,\left( \frac{208}{60} + \frac{89}{60} \right) \\ &= \pi\,\left( \frac{297}{60} \right) \\ &= \frac{99\,\pi}{20}\,\textrm{units}^3 \end{align*}$
 
Physics news on Phys.org
Using the same region, what will be the volume of the solid if that region is rotated around the line $\displaystyle \begin{align*} x = -1 \end{align*}$?

To do this, picture what it would look like if the region was rotated about the vertical line x = -1. This solid can be thought of as a bunch of vertically oriented thin hollow cylinders being stuck together. If we move everything right by 1 unit, the volumes will be the same, but we will rotate around the y axis. So we really want the area between $\displaystyle \begin{align*} y = x \end{align*}$ and $\displaystyle \begin{align*} y = 2\,\left( x - 1 \right) ^2 \end{align*}$ with $\displaystyle \begin{align*} \frac{1}{2} \leq x \leq 2 \end{align*}$.

The curved surface of each cylinder is a rectangle. The width of the rectangle is equal to the vertical distance between the two functions, so $\displaystyle \begin{align*} y_2 - y_1 = x - 2\,\left( x - 1 \right)^2 = x - 2\,\left( x^2 - 2\,x + 1 \right) = x - 2\,x^2 + 4\,x - 1 = 5\,x - 2\,x^2 - 1 \end{align*}$, and the length is the same as the circumference of the cylinder, so $\displaystyle \begin{align*} 2\,\pi\,r \end{align*}$. Since the radius of each cylinder is the x value of the function, that means the area of the curved surface of each cylinder is $\displaystyle \begin{align*} 2\,\pi\,x\,\left( 5\,x - 2\,x^2 - 1 \right) \end{align*}$, and thus the volume of each cylinder is $\displaystyle \begin{align*} 2\,\pi\,x\,\left( 5\,x - 2\,x^2 - 1 \right) \,\Delta x \end{align*}$, where $\displaystyle \begin{align*} \Delta x \end{align*}$ is a small change in x.

We can therefore approximate the total volume by adding up the volumes of all these cylinders, so $\displaystyle \begin{align*} \sum{ 2\,\pi\,x\,\left( 5\,x - 2\,x^2 - 1 \right) \,\Delta x } \end{align*}$. As we increase the number of cylinders, thereby making each one thinner, the approximation gets better. So as $\displaystyle \begin{align*} n \to \infty \end{align*}$ and $\displaystyle \begin{align*} \Delta x \to 0 \end{align*}$, the approximation becomes exact, and the sum becomes an integral. So the volume of the solid is exactly

$\displaystyle \begin{align*} V &= \int_{\frac{1}{2}}^2{ 2\,\pi\,x\,\left( 5\,x - 2\,x^2 - 1 \right) \,\mathrm{d}x } \\ &= 2\,\pi\int_{\frac{1}{2}}^2{ \left( 5\,x^2 - 2\,x^3 - x \right) \,\mathrm{d}x } \\ &= 2\,\pi \,\left[ \frac{5\,x^3}{3} - \frac{x^4}{2} - \frac{x^2}{2} \right] _{\frac{1}{2}}^2 \\ &= 2\,\pi\,\left\{ \left[ \frac{5\,\left( 2 \right) ^3}{3} - \frac{2^4}{2} - \frac{2^2}{2} \right] - \left[ \frac{5\,\left( \frac{1}{2} \right) ^3}{3} - \frac{\left( \frac{1}{2} \right) ^4}{2} - \frac{\left( \frac{1}{2} \right) ^2}{2} \right] \right\} \\ &= 2\,\pi\, \left[ \left( \frac{40}{3} - 8 - 2 \right) - \left( \frac{5}{24} - \frac{1}{32} - \frac{1}{8} \right) \right] \\ &= 2\,\pi \,\left[ \left( \frac{40}{3} - \frac{30}{3} \right) - \left( \frac{20}{96} - \frac{3}{96} - \frac{12}{96} \right) \right] \\ &= 2\,\pi \, \left( \frac{10}{3} - \frac{5}{96} \right) \\ &= 2\,\pi\,\left( \frac{320}{96} - \frac{5}{96} \right) \\ &= 2\,\pi\,\left( \frac{315}{96} \right) \\ &= 2\,\pi\,\left( \frac{105}{32} \right) \\ &= \frac{105\,\pi}{16}\,\textrm{units}^3 \end{align*}$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
6K