MHB Effie's question via email about Complex Numbers

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
If $\displaystyle \begin{align*} z = -2 + 2\,\mathbf{i} \end{align*}$ what is $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) \end{align*}$?

First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
This problem is solved correctly.
 
Well, we can see that ##\arg (z) = \frac{3\pi}{4}## by considering its position in the plane. Then ##arg (z^5) = \frac{15\pi}{4} = -\frac {\pi}{4}##.
 
  • Like
Likes Greg Bernhardt
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
6K
Replies
1
Views
10K
Replies
2
Views
10K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top