MHB Effie's question via email about Complex Numbers

Click For Summary
SUMMARY

The discussion focuses on calculating the argument of the complex number raised to a power, specifically for the complex number \( z = -2 + 2\,\mathbf{i} \). The polar form of \( z \) is determined to be \( 2\sqrt{2}\,e^{\frac{3\pi}{4}\,i} \). The argument of \( z^5 \) is calculated as \( \frac{15\pi}{4} \), which is simplified to \( -\frac{\pi}{4} \) to fit within the defined range of \( \textrm{arg}(Z) \in (-\pi, \pi] \). The solution is confirmed to be correct, demonstrating a clear understanding of complex number manipulation.

PREREQUISITES
  • Understanding of complex numbers and their polar forms
  • Knowledge of the argument function for complex numbers
  • Familiarity with trigonometric functions and their inverses
  • Basic algebraic manipulation of exponential forms
NEXT STEPS
  • Study the properties of complex numbers in polar form
  • Learn about De Moivre's Theorem for raising complex numbers to powers
  • Explore the geometric interpretation of complex number arguments
  • Investigate the implications of complex number arguments in signal processing
USEFUL FOR

Mathematicians, physics students, and anyone interested in complex analysis or electrical engineering will benefit from this discussion, particularly those looking to deepen their understanding of complex number operations and their applications.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
If $\displaystyle \begin{align*} z = -2 + 2\,\mathbf{i} \end{align*}$ what is $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) \end{align*}$?

First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
 
Physics news on Phys.org
Prove It said:
First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
This problem is solved correctly.
 
Well, we can see that ##\arg (z) = \frac{3\pi}{4}## by considering its position in the plane. Then ##arg (z^5) = \frac{15\pi}{4} = -\frac {\pi}{4}##.
 
  • Like
Likes Greg Bernhardt

Similar threads

  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K