MHB Effie's question via email about Complex Numbers

AI Thread Summary
The discussion revolves around calculating the argument of the complex number \( z^5 \) where \( z = -2 + 2i \). The polar form of \( z \) is determined to be \( 2\sqrt{2} e^{\frac{3\pi}{4} i} \), leading to \( z^5 = 128\sqrt{2} e^{\frac{15\pi}{4} i} \). The angle \( \frac{15\pi}{4} \) is adjusted to fit within the defined range of \( (-\pi, \pi] \), resulting in \( \text{arg}(z^5) = -\frac{\pi}{4} \). The solution confirms the correct calculation of the argument based on the properties of complex numbers.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
If $\displaystyle \begin{align*} z = -2 + 2\,\mathbf{i} \end{align*}$ what is $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) \end{align*}$?

First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
First let's write this number in its polar form.

$\displaystyle \begin{align*} \left| z \right| &= \sqrt{\left( -2 \right) ^2 + 2^2} \\ &= \sqrt{4 + 4} \\ &= \sqrt{8} \\ &= 2\,\sqrt{2} \end{align*}$

and as the number is in Quadrant 2

$\displaystyle \begin{align*} \textrm{arg}\,\left( z \right) &= \pi - \arctan{ \left| \frac{2}{-2} \right| } \\ &= \pi - \arctan{ \left( 1 \right) } \\ &= \pi - \frac{\pi}{4} \\ &= \frac{3\,\pi}{4} \end{align*}$

thus we can say

$\displaystyle \begin{align*} z &= -2 + 2\,\mathrm{i} \\ &= 2\,\sqrt{2}\,\mathrm{e}^{ \frac{3\,\pi}{4}\,\mathrm{i} } \\ z^5 &= \left( 2\,\sqrt{2}\,\mathrm{e}^{\frac{3\,\pi}{4}\,\mathrm{i}} \right) ^5 \\ &= 128\,\sqrt{2}\,\mathrm{e}^{ \frac{15\,\pi}{4}\,\mathrm{i} } \end{align*}$

so that means $\displaystyle \begin{align*} z^5 \end{align*}$ makes an angle of $\displaystyle \begin{align*} \frac{15\,\pi}{4} \end{align*}$ with the positive real axis, but as we define $\displaystyle \begin{align*} \textrm{arg}\,\left( Z \right) \in \left( -\pi , \pi \right] \end{align*}$, that means we keep adding or subtracting integer multiples of $\displaystyle \begin{align*} 2\,\pi \end{align*}$ until we have an angle in this region.

Thus $\displaystyle \begin{align*} \textrm{arg}\,\left( z^5 \right) = -\frac{\pi}{4} \end{align*}$.
This problem is solved correctly.
 
Well, we can see that ##\arg (z) = \frac{3\pi}{4}## by considering its position in the plane. Then ##arg (z^5) = \frac{15\pi}{4} = -\frac {\pi}{4}##.
 
  • Like
Likes Greg Bernhardt
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
6K
Replies
1
Views
10K
Replies
2
Views
10K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top